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Source: Papers with Code | Image Classification on ImageNet (9 Nov 2023)

ImageNet still drives progress to date, but top-1 accuracy is stagnating.


https://paperswithcode.com/sota/image-classification-on-imagenet

Model Predictions vs Ground-Truth
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(Figure from Beyer et al.)

Beyer et al., "Are we done with ImageNet?”, arXiv 2020
Tsipras et al., “From ImageNet to Image Classification: Contextualizing Progress on Benchmarks”, ICML 2020



Categorization of Model Errors on ImageNet

Prior work (Vasudevan et al.):
e Manual review by a panel of experts
e C(lassify error category and severity

X time-consuming
X inconsistent

X infeasible without experts

= restricted to two SOTA models

Vasudevan et al., “When does dough become a bagel? Analyzing the remaining mistakes on ImageNet”, NeurlPS 2022



Automated Classification of Model Errors

This work: Automated error classification pipeline

all error categories identified by prior work
minimal-severity bias
consistent and repeatable

NENEN

= study the error distributions of 900+ models



Automated Classification of Model Errors
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No Error Minor Error
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Fine-Grained Errors

Model Failures

e Confuse similar, semantically related ImageNet classes
e Manually group all 1000 ImageNet classes into 161 superclasses

00 Portion of Group’s Multi-Label Errors [%)]

e mlp organisms #‘
¢ M\‘}
cnn gg\ ;»’g
4 transformer " il
60 = hybrid
30 s T tifacts
0
60 80 100
v/ Ground-truth: tabby cat MLA [%]
X Prediction: Egyptian cat (Multi-label Accuracy)

Same superclass: domestic cat

Classes Label Grained Out Of Vocabulary



g

No Error Minor Error
. . e = EE
Fine-Grained OOV Errors
Non-Prototypical Cilsul b Model Failures
Explainable Error

e C(Classify a prominent entity not in the ImageNet labelset
e Visually similar train sample in the same superclass — possibly a fine-grained error
e Collect proposals from WordNet and confirm OOV with an open world classifier
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Non-Prototypical Model Failures

e |dentify commonly co-occurring classes
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Explainable Error ﬂ
e Particularly severe, hard to explain errors
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= MLA pessimistic: model failures decrease faster than multi-label errors
= Portion of model failures higher for artifacts, but drops rapidly



Further details in the paper:

Model pre-training datasets
Model architecture
Alignment to human experts
Extension to other datasets



Summary
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Code, evaluation & analysis:

() https://github.com/eth-sri/automated-error-analysis
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https://github.com/eth-sri/automated-error-analysis

