Optimized Covariance Design for A/B Test on Social Network

Experiment Design under Interference

Lecturer: Qianyi Chen Tsinghua University

Introduction

Background: Experimentation on Network

- AB test is widely adopted by social platform such as LinkedIn, Wechat, to validate new features of product.
- Interference happens when people on social network interact with each other, and the influence (on concerned metric) of treatment is propagated along edges.
- Platform is concerned with global average treatment effect (GATE), whose estimation is blurred by severe bias brought by interference.

Position of Our Work

- Interference type: interference conducted by social network
- Design : treatment allocation (contrasting post-treatment techniques, such as regression adjustment)
- Regime: intensity of interference is comparable to direct treatment effect.

Limitations of Existing Literatures

- Most existing works focus on variance reduction, while bias is also very important, even dominate variance, as exposed in our simulation.
- There are a variety of variance bounds of different estimators, while seldom of them can directly instruct experiment design.
- Many experiment designs are concerned with mathematical programming (such as SDP, MILP) that scale badly for social platform.

Traits of our Optimized Covariance Design

- We're concerned with minimization of a tight MSE upper bound that consider bias and variance in a meanwhile.
- We derive an optimizable bound on MSE under a potential outcome model that enables covariance matrix of treatment vector to be decision variables.
- We propose a sampling procedure and a projected gradient descent algorithm that supports efficient optimization.

Basic Setting

• We consider binary treatment vector

$$\boldsymbol{z} = (z_1, z_2, \dots, z_n) \in \{0, 1\}^n$$

• The estimand is GATE

$$\tau := \frac{1}{n} \sum_{i \in [n]} \left(Y_i(\mathbf{1}) - Y_i(\mathbf{0}) \right)$$

• We consider graph cluster randomization, and cluster-level treatment vector is

$$\boldsymbol{t} = (t_1, t_2, \dots, t_K) \in \{0, 1\}^K$$

Basic Setting

• We consider balanced cluster-level randomization

$$\mathbb{P}(t_k = 1 \mid \mathcal{G}) = \frac{1}{2} \quad \mathbb{E}[z_i] = \frac{1}{2}$$

- We consider standard HT estimator (without exposure indicator) $\hat{\tau} = \frac{1}{n} \sum_{i \in [n]} \left(\left(\frac{z_i}{\mathbb{E}[z_i]} - \frac{(1-z_i)}{\mathbb{E}[1-z_i]} \right) Y_i(z) \right)$
- We consider following linear potential outcome model

$$Y_i(\boldsymbol{z}) = \alpha_i + \beta_i z_i + \gamma \sum_{j \in N_i} z_j$$

Bias and Variance Analysis

Bias of HT Estimator

• Firstly, we define a core term in our methodology, which characterizes the connections between/within clusters. Here S_k is the k-th cluster

 $\boldsymbol{C}_{ij} = |\{(u,v) : (u,v) \in \mathcal{E}, u \in S_i, v \in S_j\}|$

- Now we can present the bias of HT estimator under our model $\mathbb{E}[\hat{\tau}] - \tau = \frac{\gamma}{n} \left(4 \operatorname{trace}(\boldsymbol{C} \operatorname{Cov}[\boldsymbol{t}]) - \sum_{i,j \in [K]} \boldsymbol{C}_{ij} \right)$
- This bias formula implies
 - Only connections between clusters can contribute to bias.
 - Only positive correlation can reduce bias.

Variance of HT Estimator

- To derive a clean variance, we must introduce an assumption on base level α_i , which is we know all base levels in advance.
- This assumption is reasonable for social platform since they collect concerned metrics constantly, and it remove the giant influence of α_i in variance (since $\alpha_i \gg \beta_i$ in such experiments)
- Based on it, we can derive the expression of variance.

$$\operatorname{Var}[\hat{\tau}] = \frac{4}{n^2} \left(\operatorname{trace} \left(\boldsymbol{h} \boldsymbol{h}^T \operatorname{Cov}[\boldsymbol{t}] \right) + 4\gamma \operatorname{Cov} \left[\boldsymbol{h}^T \boldsymbol{t}, \boldsymbol{t}^T \boldsymbol{C} \boldsymbol{t} \right] + 4\gamma^2 \operatorname{Var} \left[\boldsymbol{t}^T \boldsymbol{C} \boldsymbol{t} \right] \right)$$

Methodology

Bypass Parameter Estimation

- The expression of variance can't be optimized directly without knowing interference intensity γ in advance.
- We introduce following comparability assumption that restricts our scope to the scene that interference is comparable to direct treatment effect

Assumption 3 (Comparability between Direct Treatment Effect and Interference) Given potential outcome model in equation (6), we assume there exists a constant $\omega > 0$ such that

$$|\boldsymbol{h}_k| \le \omega \gamma(\sum_{i \in S_k} d_i) \tag{13}$$

holds for each cluster $k \in [K]$ *.*

Bypass Parameter Estimation

- Now we can construct a variance bound that depends on experiment design only through covariance matrix of treatment vector.
- Moreover, this bound is well-crafted and allow us to bypass the estimation on γ : if we're concerned with minimize this bound, γ^2 is a common multiplier in squared bias and variance bound!

Proposition 3 (Variance Bound) The variance of the standard HT estimator has following upper bound,

$$\operatorname{Var}[\hat{\tau}] \leq \frac{8\gamma^2(\omega^2 + 4)}{n^2} \operatorname{trace}\left(\boldsymbol{dd}^T(\operatorname{Cov}[\boldsymbol{t}] + \frac{1}{4}\mathbf{1}\mathbf{1}^T)\right)$$
(14)

where d is the vector $(\sum_{i \in S_k} d_i)_{k=1}^K$.

Enable Sampling Following Optimized Covariance

- Before we finish the formulation of optimizing the covariance matrix, we should guarantee two points
 - The covariance matrix is legal for multi-variate Bernoulli distribution.
 - We can sample treatment vector that's subject to such covariance.
- To realize it, we introduce the Grothendieck's identity and a Cholesky-based parameterization, and the covariance matrix is parameterized as

$$X(R) = \frac{\arcsin\left(RR^T\right)}{2\pi}$$

Optimization Issues

• Through this parameterization, the constraints is simplified significantly.

$$\begin{split} \min_{R} & M(R) = B(X(R))^{2} + \bar{V}_{\omega}(X(R)) \\ \text{s.t.} & (RR^{T})_{i,j} \in [-1,1] \quad \forall i \neq j, \ i,j \in [K] \\ & (RR^{T})_{i,i} = 1 \qquad \forall i \in [K] \end{split}$$

- We verify that row-normalization is a projection to feasible domain, and propose a projected gradient descent algorithm for the optimization.
- After optimization, we can sample directly from desired distribution

$$\boldsymbol{t} = \frac{\boldsymbol{1} + \operatorname{sgn}\left(R^* \mathcal{N}\left(\boldsymbol{0}, I_K\right)\right)}{2}$$

Simulation Result

• Our optimized covariance design present significant improvement on both statistical metrics (bias, variance, MSE), and computational efficiency.

gamma metric method	Bias	0.5 SD	MSE	Bias	1.0 SD	MSE	Bias	2.0 SD	MSE
Ber	-0.365	0.348	0.255	-0.736	0.394	0.698	-1.475	0.493	2.421
CR	-0.368	0.235	0.191	-0.744	0.274	0.629	-1.477	0.336	2.297
ReAR	-0.402	0.178	0.194	-0.809	0.174	0.685	-1.548	0.226	2.450
PSR	-0.366	0.134	0.152	-0.738	0.153	0.569	-1.479	0.192	2.227
IBR	-0.369	0.155	0.161	-0.737	0.178	0.576	-1.484	0.221	2.252
IBR-p	-0.368	0.163	0.163	-0.739	0.185	0.581	-1.482	0.232	2.252
OCD	-0.258	0.040	0.069	-0.517	0.050	0.271	-1.034	0.054	1.073

Table 2: The average bias, standard deviation and MSE of HT estimator under multiplicative model