Optimizing over trained GNNs via symmetry breaking

Shiqiang Zhang ${ }^{a}$, Juan S Campos ${ }^{a}$, Christian Feldmann ${ }^{b}$, David Walz b, Frederik Sandfort ${ }^{b}$, Miriam Mathea ${ }^{b}$, Calvin Tsay ${ }^{a}$, Ruth Misener ${ }^{a}$
${ }^{a}$ Imperial College London, South Kensington, SW7 2AZ, UK
${ }^{b}$ BASF SE, Ludwigshafen am Rhein, Germany
Funding EPSRC EP/W003317/1 \& EP/T001577/1
$37^{\text {th }}$ Conference on Neural Information Processing Systems
New Orleans, United States
December $10^{\text {th }}-16^{\text {th }}, 2023$

Imperial College London

- BASF
We create chemistry

Motivation: Forward \& Backward problems over GNNs

Prediction (Forward): What are the properties for a given molecule?

Optimization (Backward): What is the optimal molecule with desired properties?

Problem definition

Given a trained GNN, we aim to find the input with optimal property ${ }^{1}$:

$$
\begin{aligned}
\left(X^{*}, A^{*}\right)=\underset{(X, A)}{\arg \min } & G N N(X, A) \\
\text { s.t. } & f_{j}(X, A) \leq 0, j \in \mathcal{J} \\
& g_{k}(X, A)=0, k \in \mathcal{K}
\end{aligned}
$$

where X denotes features, A is the adjacency matrix of input graph, f_{j}, g_{k} are problem-specific constraints, and \mathcal{J}, K are index sets.

[^0]
Symmetry issue

Observation

GNN is permutation invariant ${ }^{2}$: isomorphic graphs have the same output.

Good for training

Different indexing of a graph data will not influence its output.
${ }^{2}$ In this work, we only consider GNNs that are permutation invariant.

Symmetry issue

Observation

GNN is permutation invariant ${ }^{2}$: isomorphic graphs have the same output.

Good for training

Different indexing of a graph data will not influence its output.

Bad for optimization

Each graph indexing corresponds to a solution, which significantly enlarges the searching space. For example, there are $4!=24$ different indexing for this molecule:

[^1]
Symmetry-breaking constraints $\left.\right|^{3}$

Each node (except 0) should be linked with a node with smaller index:

$$
\begin{equation*}
\forall v \in[N] \backslash\{0\}, \exists u<v, \text { s.t. } A_{u, v}=1 \tag{S1}
\end{equation*}
$$

i.e., the subgraph induced by nodes $\{0,1, \ldots, v\}$ is connected.

10 out of 24 solutions violate (S1), for example:

$\Longrightarrow \quad$ Node 1 is not linked with node 0 .

[^2]
Symmetry-breaking constraints II ${ }^{4}$

Node 0 has the minimal function value under a designed hierarchical function $h: \mathbb{R}^{F} \rightarrow \mathbb{R}$ defined over features:

$$
\begin{equation*}
h\left(X_{0}\right) \leq h\left(X_{v}\right), \forall v \in[N] \backslash\{0\} \tag{S2}
\end{equation*}
$$

i.e., node 0 has the most "special" features under the action of h.

11 out of 14 solutions violate (S2), for example:

\qquad
Construct h such that $h(N)<h(C)$, then the nitrogen atom should be indexed 0 .

[^3]
Symmetry-breaking constraints $\left.1 I\right|^{5}$

The neighbor set of a node with smaller index has smaller lexicographical order:

$$
\begin{equation*}
L O(\mathcal{N}(v) \backslash\{v+1\}) \leq L O(\mathcal{N}(v+1) \backslash\{v\}), \forall v \in[N-1] \backslash\{0\} \tag{S3}
\end{equation*}
$$

i.e., node v has "stronger" neighbors comparing to node $v+1$.

2 out of 3 solutions violate (S3), for example:

$$
\begin{aligned}
& \mathcal{N}(2)=\{1\}, \mathcal{N}(3)=\{0,1\} \\
& L O(\mathcal{N}(2) \backslash\{3\})>L O(\mathcal{N}(3) \backslash\{2\})
\end{aligned}
$$

[^4]
Do these constraints reduce the diversity of the feasible set?

Algorithm 1 yields at least one feasible indexing for any graph (see proofs in the paper).

```
Algorithm 1 Indexing algorithm
Input: \(G=(V, E)\) with node set \(V=\left\{v_{0}, v_{1}, \ldots, v_{N-1}\right\}(N:=|V|)\). Denote the neighbor set of node \(v\) as \(\mathcal{N}(v), \forall v \in V\).
\(\mathcal{I}\left(v_{0}\right) \leftarrow 0 \quad \triangleright\) Assume that \(v_{0}\) is indexed with 0
\(s \leftarrow 1\)
\(\left.V_{1} \leftarrow \leftarrow v_{0}\right\}\)
while \(s<N\) do
        \(V_{2}^{s} \leftarrow V \backslash V_{1}^{s} \quad \triangleright\) Set of unindexed nodes
        \(\mathcal{N}^{s}(v) \leftarrow\left\{\mathcal{I}(u) \mid u \in \mathcal{N}(v) \cap V_{1}^{s}\right\}, \forall v \in V_{2}^{s} \quad \triangleright\) Obtain all indexed neighbors
        \(\operatorname{rank}^{s}(v) \leftarrow\left|\left\{L O\left(\mathcal{N}^{s}(u)\right)<L O\left(\mathcal{N}^{s}(v)\right) \mid \forall u \in V_{2}^{s}\right\}\right|, \forall v \in V_{2}^{s}\)
                            \(>\) Assign a rank to each unindexed node
        \(\mathcal{I}^{s}(v) \leftarrow\left\{\begin{array}{ll}\mathcal{I}(v), & \forall v \in V_{1}^{s} \\ \operatorname{rank}^{s}(v)+s, & \forall v \in V_{2}^{s}\end{array} \quad \triangleright\right.\) Assign temporary indexes
        \(\mathcal{N}_{t}^{s}(v) \leftarrow\left\{\mathcal{I}^{s}(u) \mid u \in \mathcal{N}(v)\right\}, \forall v \in V_{2}^{s} \quad \triangleright\) Define temporary neighbor sets based on \(\mathcal{I}^{s}\)
        \(v^{s^{t}} \leftarrow \arg \min _{v \in V_{2}^{s}} L O\left(\mathcal{N}_{t}^{s}(v)\right)\)
                            \(\triangleright\) Neighbors of \(v^{s}\) has minimal order
\(>\) If multiple nodes share the same minimal order, arbitrarily choose one
        \(\mathcal{I}\left(v^{s}\right)=s \quad \triangleright\) Index \(s\) to node \(v^{s}\)
```



```
        \(s \leftarrow s+1\)
    end while
    Output: \(\mathcal{I}(v), v \in V\)
    \(\triangleright\) Result indexing
```


Mixed-integer formulation for GNNs

Since the input graph structure is not fixed, all elements in the adjacency matrix are variables:

$$
\boldsymbol{x}_{v}^{(l)}=\sigma\left(\sum_{u \in V} e_{u \rightarrow v} \boldsymbol{w}_{u \rightarrow v}^{(l)} \boldsymbol{x}_{u}^{(l-1)}+\boldsymbol{b}_{v}^{(l)}\right)
$$

where

- $\boldsymbol{x}_{v}^{(l)}:$ (continuous or discrete) variables, the features of node v in l-th layer.
- $e_{u \rightarrow v}$: binary variable, the existence of edge $u \rightarrow v$.
- $\boldsymbol{w}_{u \rightarrow v}^{(l)}, \boldsymbol{b}_{v}^{(l)}:$ constants, weights and biases of l-th layer.

Bilinear terms $e_{u \rightarrow v} \boldsymbol{x}_{u}^{(l-1)}$ result in a mixed-integer quadratically constrained optimization problem (MIQCP), which can be handled by state-of-the-art solvers such as Gurobi.

Alternatively, they can be reformulated in a linear way using big-M formulation.

Numerical results

Table 1: Numbers of feasible solutions for QM7.

N	$(\mathrm{~S} 1)$	$(\mathrm{S} 1)-(\mathrm{S} 2)$	$(\mathrm{S} 1)-(\mathrm{S} 3)$
4	3,323	726	416
5	67,020	11,747	3,003
$\mathbf{6}$	$>\mathbf{2 , 5 0 0}, \mathbf{0 0 0}$	$\mathbf{4 4 3}, \mathbf{7 5 7}$	$\mathbf{5 0 , 9 5 1}$
7	$>2,500,000$	$>2,500,000$	504,952

Our numerical results show that:

- Symmetry-breaking constraints significantly reduce the searching space.
- After breaking symmetry, the solving time is largely decreased.

Figure 1: Average solving time over 50 runs.

Numerical results

Table 1: Numbers of feasible solutions for QM7.

N	$(\mathrm{~S} 1)$	$(\mathrm{S} 1)-(\mathrm{S} 2)$	$(\mathrm{S} 1)-(\mathrm{S} 3)$
4	3,323	726	416
5	67,020	11,747	3,003
$\mathbf{6}$	$>\mathbf{2 , 5 0 0 , 0 0 0}$	$\mathbf{4 4 3 , \mathbf { 7 5 7 }}$	$\mathbf{5 0 , 9 5 1}$
7	$>2,500,000$	$>2,500,000$	504,952

Our numerical results show that:

- Symmetry-breaking constraints significantly reduce the searching space.
- After breaking symmetry, the solving time is largely decreased.

Thanks for your attention!
Figure 1: Average solving time over 50 runs.

[^0]: ${ }^{1}$ Optimality is defined on this given GNN instead of true properties.

[^1]: ${ }^{2}$ In this work, we only consider GNNs that are permutation invariant.

[^2]: ${ }^{3} N$: number of nodes.

[^3]: ${ }^{4} F$: number of features.

[^4]: ${ }^{5} \mathcal{N}(\cdot)$: neighbor set. $L O(\cdot)$: lexicographical order.

