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Motivation: Forward & Backward problems over GNNs
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Prediction (Forward): What are the properties for a given molecule?

Optimization (Backward): What is the optimal molecule with desired properties?
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Problem definition

Given a trained GNN, we aim to find the input with optimal property 1:

(X∗, A∗) = argmin
(X,A)

GNN (X,A)

s.t. fj(X,A) ≤ 0, j ∈ J
gk(X,A) = 0, k ∈ K

where X denotes features, A is the adjacency matrix of input graph, fj , gk are problem-specific
constraints, and J ,K are index sets.

1Optimality is defined on this given GNN instead of true properties.
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Symmetry issue
Observation
GNN is permutation invariant2: isomorphic graphs have the same output.

Good for training

Different indexing of a graph data will not influence its output.

Bad for optimization

Each graph indexing corresponds to a solution, which significantly enlarges the searching space.

For example, there are 4! = 24 different indexing for this molecule:

· · ·

2In this work, we only consider GNNs that are permutation invariant.
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Symmetry-breaking constraints I3

Each node (except 0) should be linked with a node with smaller index:

∀v ∈ [N ]\{0}, ∃u < v, s.t. Au,v = 1 (S1)

i.e., the subgraph induced by nodes {0, 1, . . . , v} is connected.

10 out of 24 solutions violate (S1), for example:

=⇒ Node 1 is not linked with node 0.

3N : number of nodes.
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Symmetry-breaking constraints II4

Node 0 has the minimal function value under a designed hierarchical function h : RF → R
defined over features:

h(X0) ≤ h(Xv), ∀v ∈ [N ]\{0} (S2)

i.e., node 0 has the most "special" features under the action of h.

11 out of 14 solutions violate (S2), for example:

=⇒ Construct h such that h(N) < h(C), then the
nitrogen atom should be indexed 0.

4F : number of features.
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Symmetry-breaking constraints III5

The neighbor set of a node with smaller index has smaller lexicographical order:

LO(N (v)\{v + 1}) ≤ LO(N (v + 1)\{v}), ∀v ∈ [N − 1]\{0} (S3)

i.e., node v has "stronger" neighbors comparing to node v + 1.

2 out of 3 solutions violate (S3), for example:

=⇒
N (2) = {1},N (3) = {0, 1}

LO(N (2)\{3}) > LO(N (3)\{2})

5N (·): neighbor set. LO(·): lexicographical order.
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Do these constraints reduce the diversity of the feasible set?
Algorithm 1 yields at least one feasible indexing for any graph (see proofs in the paper).

Algorithm 1 Indexing algorithm
Input: G = (V,E) with node set V = {v0, v1, . . . , vN−1} (N := |V |). Denote the neighbor set of node v as N (v), ∀v ∈ V .
I(v0)← 0 ▷ Assume that v0 is indexed with 0
s← 1 ▷ Index for next node
V 1
1 ← {v0} ▷ Initialize set of indexed nodes

while s < N do
V s
2 ← V \V s

1 ▷ Set of unindexed nodes
Ns(v)← {I(u) | u ∈ N (v) ∩ V s

1 }, ∀v ∈ V s
2 ▷ Obtain all indexed neighbors

ranks(v)←
∣∣{LO(Ns(u)) < LO(Ns(v)) | ∀u ∈ V s

2 }
∣∣ , ∀v ∈ V s

2
▷ Assign a rank to each unindexed node

Is(v)←
{
I(v), ∀v ∈ V s

1

ranks(v) + s, ∀v ∈ V s
2

▷ Assign temporary indexes

Ns
t (v)← {Is(u) | u ∈ N (v)}, ∀v ∈ V s

2 ▷ Define temporary neighbor sets based on Is
vs ← arg min

v∈V s
2

LO(Ns
t (v)) ▷ Neighbors of vs has minimal order

▷ If multiple nodes share the same minimal order, arbitrarily choose one
I(vs) = s ▷ Index s to node vs

V s+1
1 ← V s

1 ∪ {v
s} ▷ Add vs to set of indexed nodes

s← s + 1 ▷ Next index is s + 1
end while
Output: I(v), v ∈ V ▷ Result indexing
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Mixed-integer formulation for GNNs

Since the input graph structure is not fixed, all elements in the adjacency matrix are variables:

x(l)
v = σ

(∑
u∈V

eu→vw
(l)
u→vx

(l−1)
u + b(l)v

)
where

x
(l)
v : (continuous or discrete) variables, the features of node v in l-th layer.

eu→v: binary variable, the existence of edge u → v.

w
(l)
u→v, b

(l)
v : constants, weights and biases of l-th layer.

Bilinear terms eu→vx
(l−1)
u result in a mixed-integer quadratically constrained optimization

problem (MIQCP), which can be handled by state-of-the-art solvers such as Gurobi.

Alternatively, they can be reformulated in a linear way using big-M formulation.
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Numerical results

Optimal molecular design:
atom → node, bond → edge
atom type, #neighbors, ... → features
chemical requirements → constraints

Our numerical results show that:
Symmetry-breaking constraints
significantly reduce the searching space.
After breaking symmetry, the solving
time is largely decreased.

Thanks for your attention!

Table 1: Numbers of feasible solutions for QM7.

N (S1) (S1) - (S2) (S1) - (S3)

4 3, 323 726 416
5 67, 020 11, 747 3, 003
6 > 2,500,000 443,757 50,951
7 > 2, 500, 000 > 2, 500, 000 504, 952

Figure 1: Average solving time over 50 runs.
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