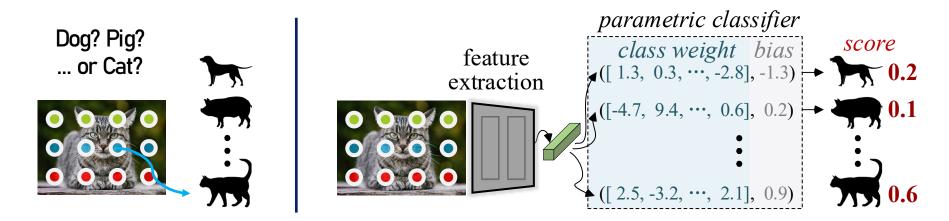
GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models

Chen Liang, Wenguan Wang, Jiaxu Miao, Yi Yang Zhejiang University & University of Technology Sydney

NeurIPS 2022

Semantic Segmentation

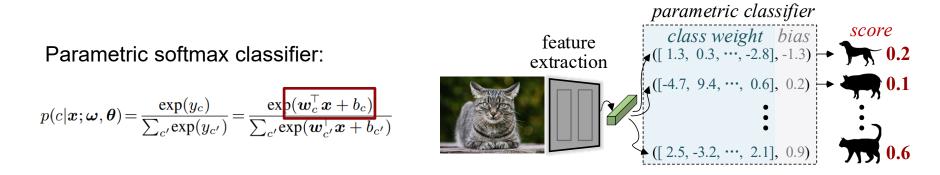


Semantic Segmentation:

Dense Feature extractor + Parametric softmax classifier

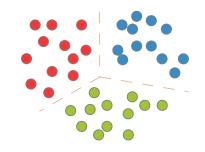
GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models

Deficiency of Parametric Softmax Classifier

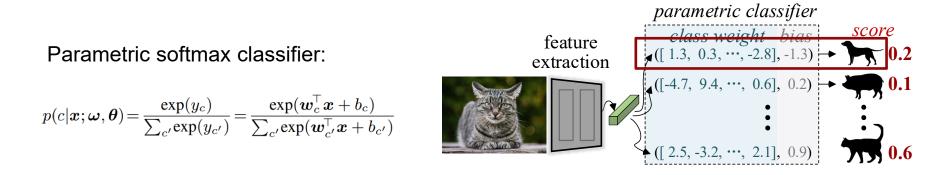


- Only learning decision boundaries; Ignoring underlying data distribution.
- Straightforward: Only learn decision boundaries
- Fail to capture the intrinsic class characteristics;

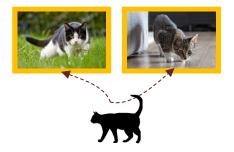
Ignore underlying data structure



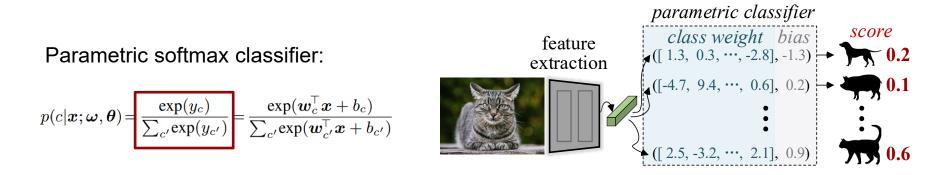
Deficiency of Parametric Softmax Classifier



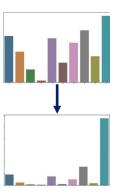
- Implicit unimodality assumption; Bearing no within-class variation.
 The unimodality assumption is rarely the case in real-world scenarios.
- The model less tolerant of intra-class variances.



Deficiency of Parametric Softmax Classifier



- Inferior robustness to out-of-distribution inputs; Poorly calibrated.
- Prediction score is useless besides its comparative value against others;
 Struggling to recognize out-of-distribution data.
- Model accuracy deteriorates rapidly away from the decision boundaries;
 yields poorly calibrated predictions.



Rethinking de facto Paradigm

- Only learning decision boundaries; Ignoring underlying data structure.
- Implicit unimodality assumption; Bearing no within-class variation.
- Inferior robustness to out-of-distribution inputs; Poorly calibrated.

Is there any way to address the limitations of *de facto* segmentation regime?

Our answer:

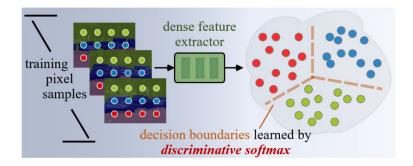
Generative Gaussian Mixture Classifier (GMMSeg)

GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models

Discriminative vs. Generative

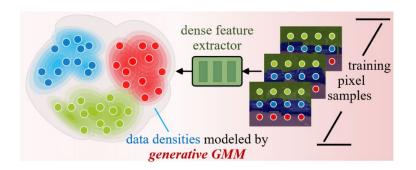
Discriminative Classifier

- Model $p(c|\boldsymbol{x})$ directly.
- Optimization: $\Pi_{(x,c)\in\mathcal{D}}p(c|\mathbf{x})$
- Model Decision Boundaries only
- Example: Parametric softmax



Generative Classifier

- Model joint distribution $p(\boldsymbol{x}, c)$. Then deduce $p(c|\boldsymbol{x}) = \frac{p(c)p(\boldsymbol{x}|c)}{\sum_{c'} p(c')p(\boldsymbol{x}|c')}$.
- Optimization: $\Pi_{(x,c)\in\mathcal{D}}p(\boldsymbol{x}|c)$ Uniform Prior
- Model entire Data Distribution
- Example: GMMSeg



GMMSeg: Distribution Modeling

Use Gaussian Mixtures to model arbitrary feature distribution:

• Simple, elegant and powerful.

$$p(\boldsymbol{x}|c;\boldsymbol{\phi}_{c}) = \sum_{m=1}^{M} p(m|c;\boldsymbol{\pi}_{c}) p(\boldsymbol{x}|c,m;\boldsymbol{\mu}_{c},\boldsymbol{\Sigma}_{c}) = \sum_{m=1}^{M} \pi_{cm} \mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_{cm},\boldsymbol{\Sigma}_{cm}).$$

Parameter optimization: Maximizing the log-likelihood over all feature-label pairs $\{(x_n, c_n)\}_{n=1}^N$

$$\boldsymbol{\phi}_{c}^{*} = \underset{\boldsymbol{\phi}_{c}}{\operatorname{arg\,max}} \sum_{\boldsymbol{x}_{n}:c_{n}=c} \log p(\boldsymbol{x}_{n}|c;\boldsymbol{\phi}_{c}) = \underset{\boldsymbol{\phi}_{c}}{\operatorname{arg\,max}} \sum_{\boldsymbol{x}_{n}:c_{n}=c} \log \sum_{m=1}^{M} p(\boldsymbol{x}_{n},m|c;\boldsymbol{\phi}_{c})$$

 $m|c \sim \text{Multinomial}(\boldsymbol{\pi}_c)$: prior of mixture components, $\sum_m \pi_{cm} = 1$.

 $\mu_{cm} \in \mathbb{R}^{D}$, $\Sigma_{cm} \in \mathbb{R}^{D \times D}$: mean and covariance matrix for component *m* in class *c*.

$$\phi_c = \{ \pi_c, \mu_c, \Sigma_c \}$$
 : set of all parameters.

GMMSeg: Sinkhorn EM Optimization

Optimization through vanilla EM (F-function form¹):

E-Step: $q_c^{(t)} = \arg \max_{q_c} F(q_c, \boldsymbol{\phi}_c^{(t-1)}),$ **M-Step:** $\boldsymbol{\phi}_c^{(t)} = \arg \max_{\boldsymbol{\phi}_c} F(q_c^{(t)}, \boldsymbol{\phi}_c).$

F-function is defined as: $F(q_c, \phi_c) = \mathbb{E}_{q_c}[\log p(\boldsymbol{x}, m | c; \phi_c)] + H(q_c)$

EM starts with some **initial guess** at parameters $\phi_c^{(0)}$, then iterates over

- **E-Step**: given $\phi^{(t-1)}$, compute the posterior $q_c^{(t)}$ over the *M* components.
- **M-Step**: given soft cluster assignment $q_c^{(t)}$, the parameters are updated as $\phi_c^{(t)}$ such that the F function is maximized.

 $q_c[m] = p(m|\mathbf{x}, c; \boldsymbol{\phi}_c)$: the probability that data *x* is **assigned** to component *m*.

 $H(q_c) = -\mathbb{E}_{q_c}[\log q_c[m]]$: the entropy of q_c .

GMMSeg: Sinkhorn EM Optimization

Problem: Standard EM suffers from slow convergence; Delivers unsatisfactory results, potentially due to the parameter sensitivity of EM.

GMMSeg: Sinkhorn EM Optimization

Sinkhorn EM¹ with a uniform prior on mixture weight, i.e. $\forall c, m : \pi_{cm} = \frac{1}{M}$:

E-Step:
$$q_c^{(t)} = \arg \max_{q_c \in \mathcal{Q}_c} F(q_c, \boldsymbol{\phi}_c^{(t-1)})$$

restricted by a constraint: $Q_c = \{q_c : \frac{1}{N_c} \sum_{\boldsymbol{x}_n : c_n = c} p(m | \boldsymbol{x}_n, c) = \frac{1}{M}\}$

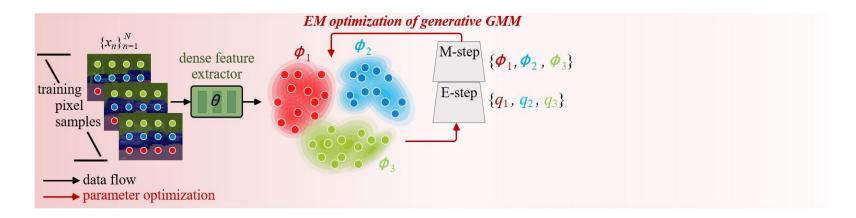
Analogous to entropy-regularized OT: - Solved by Sinkhorn-Knopp algorithm.

$$\min_{\boldsymbol{Q}_{c} \in \mathcal{Q}_{c}^{\prime}} \sum_{n,m} \boldsymbol{Q}_{c}(n,m) \boldsymbol{O}_{c}(n,m) + \epsilon H(\boldsymbol{Q}_{c}), \quad \mathcal{Q}_{c}^{\prime} = \{\boldsymbol{Q}_{c} \in \mathbb{R}^{N_{c} \times M}_{+} : \boldsymbol{Q}_{c} \boldsymbol{1}^{M} = \boldsymbol{1}^{N_{c}}, (\boldsymbol{Q}_{c})^{\mathsf{T}} \boldsymbol{1}^{N_{c}} = \frac{N_{c}}{M} \boldsymbol{1}^{M} \}$$

 Sinkhorn EM is proved to have the same global optimum with the standard EM yet is less prone to getting stuck in local optima¹.

 $Q_c(n,m) = q_{cn}[m]$: posterior distribution over the *M* components (target solution). $O_c(n,m) = -\log p(\mathbf{x}_n|c,m)$: negative log-likelihood (cost matrix).

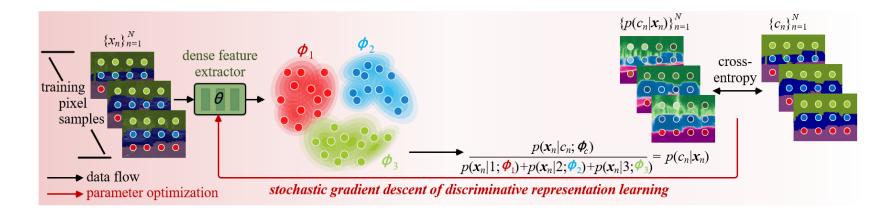
GMMSeg: Hybrid Optimization



Generative Optimization (Sinkhorn EM) of **GMM Classifier**: $\{\phi_c^*\}_{c=1}^C =$

$$\{ \arg\max_{\boldsymbol{\phi}_c} \sum_{\boldsymbol{x}_n:c_n=c} \log p(\boldsymbol{x}_n | c; \boldsymbol{\phi}_c) \}_{c=1}^C = \{ \arg\max_{\boldsymbol{\phi}_c} \sum_{\boldsymbol{x}_n:c_n=c} \log \sum_{m=1}^M \pi_{cm} \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_{cm}, \boldsymbol{\Sigma}_{cm}) \}_{c=1}^C,$$

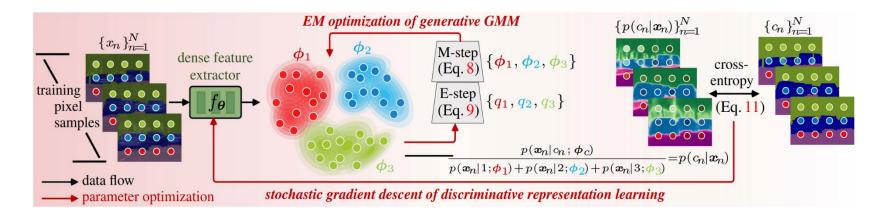
GMMSeg: Hybrid Optimization



Discriminative Learning (Cross-Entropy Loss) of **Dense Representation**: $\theta^* =$

$$\arg\min_{\boldsymbol{\theta}} -\sum_{(x,c)\in\mathcal{D}} \log p(c|\boldsymbol{x}; \{\boldsymbol{\phi}_{c}^{*}\}_{c=1}^{C}, \boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} -\sum_{(x,c)\in\mathcal{D}} \log \left(\frac{\sum_{m=1}^{M} \pi_{cm} \mathcal{N}(f_{\boldsymbol{\theta}}(x); \boldsymbol{\mu}_{cm}, \boldsymbol{\Sigma}_{cm})}{\sum_{c'=1}^{C} \sum_{m=1}^{M} \pi_{c'm} \mathcal{N}(f_{\boldsymbol{\theta}}(x); \boldsymbol{\mu}_{c'm}, \boldsymbol{\Sigma}_{c'm})}\right)$$

GMMSeg: Hybrid Optimization



Generative Optimization (Sinkhorn EM) of **GMM Classifier**: $\{\phi_c^*\}_{c=1}^C =$

$$\{ \arg\max_{\boldsymbol{\phi}_c} \sum_{\boldsymbol{x}_n:c_n=c} \log p(\boldsymbol{x}_n | c; \boldsymbol{\phi}_c) \}_{c=1}^C = \{ \arg\max_{\boldsymbol{\phi}_c} \sum_{\boldsymbol{x}_n:c_n=c} \log \sum_{m=1}^M \pi_{cm} \mathcal{N}(\boldsymbol{x}_n; \boldsymbol{\mu}_{cm}, \boldsymbol{\Sigma}_{cm}) \}_{c=1}^C,$$

Discriminative Learning (Cross-Entropy Loss) of **Dense Representation**: $\theta^* =$

$$\arg\min_{\boldsymbol{\theta}} -\sum_{(x,c)\in\mathcal{D}} \log p(c|\boldsymbol{x}; \{\boldsymbol{\phi}_{c}^{*}\}_{c=1}^{C}, \boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} -\sum_{(x,c)\in\mathcal{D}} \log \left(\frac{\sum_{m=1}^{M} \pi_{cm} \mathcal{N}(f_{\boldsymbol{\theta}}(x); \boldsymbol{\mu}_{cm}, \boldsymbol{\Sigma}_{cm})}{\sum_{c'=1}^{C} \sum_{m=1}^{M} \pi_{c'm} \mathcal{N}(f_{\boldsymbol{\theta}}(x); \boldsymbol{\mu}_{c'm}, \boldsymbol{\Sigma}_{c'm})}\right)$$

Summary: Generative Gaussian Mixture Based Classifier

Versatility.

GMMSeg is a principled framework, fully compatible with modern seg. architectures.

- Best of Both Worlds: Strong discriminative performance.
- GMMSeg achieves the merits of both generative and discriminative learning. Fit data distribution on evolving feature space with online EM generative optimization. Discriminatively end-to-end trained data space under the guidance of the GMM classifier.
- Best of Both Worlds: Distribution-preserving in nature.
- GMMSeg can naturally reject abnormal inputs, without any post-processing;
- Meaningful likelihood of the example fitting each class GMM distribution; Well-calibrated.

Experiments: Semantic Segmentation

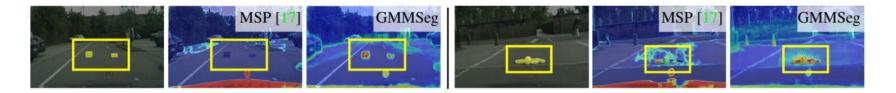
Quantitative results on ADE20K val, Cityscapes val, and COCO-Stuff test with mean IoU as the evaluation metric.

Method	Backbone	ADE _{20K}	Citys.	COCO.				
FCN [CVPR15] [1]	ResNet ₁₀₁	39.9	75.5	32.6				
PSPNet [CVPR17] [3]	ResNet ₁₀₁	44.4	79.8	37.8				
SETR [CVPR21] [9]	[†] ViT _{Large}	48.2	79.2	-				
Segmenter [ICCV21] [8]	[†] ViT _{Large}	\$51.8	79.1	-				
MaskFormer [NeurIPS21] [81]	[†] Swin _{Base}	\$52.7	-	-				
DeepLab _{V3+} [ECCV18] [47]	ResNet ₁₀₁	45.5	80.6	33.8				
GMMSeg	Kesivet ₁₀₁	46.7 1.2	81.1 \cap 0.5	35.5 1.7				
OCRNet [ECCV20] [48]	HRNet _{V2W48}	43.3	80.4	37.6				
GMMSeg	Incretv2w48	44.8 ↑1.5	81.2 \cap 0.8	39.2 ^{1.6}				
UPerNet [ECCV18] [49]	Swin _{Base}	48.0	81.1	43.4				
GMMSeg	5 w mBase	49.0 1.0	81.8 ↑0.7	44.3 ↑ 0.9				
SegFormer [NeurIPS21] [7]	MiT _{B5}	50.0	82.0	44.0				
GMMSeg	IVII I B5	50.8 ↑0.8	82.6 \cap 0.6	44.7 ↑0.7				
†: pretrained on ImageNet _{22K} ; ‡: using larger crop-size, <i>i.e.</i> , 640×640								

Experiments: Anomaly Segmentation

Method	Re-	Extra	OoD	FS Lost&Found		FS Static	
	training	Network	Data	$AP\uparrow$	$FPR_{95}\downarrow$	AP↑	$FPR_{95}\downarrow$
Density - Single-layer NLL [12]	×	 ✓ 	×	3.01	32.9	40.86	21.29
Density - Minimum NLL [12]	×	1	×	4.25	47.15	62.14	17.43
Density - Logistic Regression [12]	×	1	1	4.65	24.36	57.16	13.39
Image Resynthesis [15]	×	 ✓ 	×	5.70	48.05	29.6	27.13
Bayesian Deeplab [16]	 ✓ 	×	×	9.81	38.46	48.70	15.05
OoD Training - Void Class [17]	 ✓ 	×	1	10.29	22.11	45.00	19.40
Discriminative Outlier Detection Head [18]	 ✓ 	1	1	31.31	19.02	96.76	0.29
Dirichlet Deeplab [19]	 ✓ 	×	1	34.28	47.43	31.30	84.60
SynBoost [20]	×	1	1	43.22	15.79	72.59	18.75
MSP [21]	×	×	×	1.77	44.85	12.88	39.83
Entropy [22]	×	×	×	2.93	44.83	15.41	39.75
kNN Embedding - density [12]	×	×	×	3.55	30.02	44.03	20.25
SML [14]	×	×	×	31.05	21.52	53.11	19.64
GMMSeg-DeepLab _{V3+}	×	×	×	55.63	6.61	76.02	15.96

Fishyscapes Lost&Found test and Static test.



GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models

Summary: Rethinking de facto Paradigm in Segmentation

- Only learning decision boundaries; Ignoring underlying data structure.
- Implicit unimodality assumption; Bearing no within-class variation.
- Inferior robustness to out-of-distribution inputs; Poorly calibrated.

Our answer:

Generative Classifier: Gaussian Mixture Model based Classifier (GMMSeg).

Thanks!