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Motivation

When Does Group Invariant Learning Survive Spurious
Correlations?



‘ Invariant learning

In real world applications, machine learning model encounters out-of-distribution

(OOD) data
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‘ Invariant learning and environments

Invariant learning: a notable kind of method for OOD generalization
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Invariant learning is designed for the case when environment labels are available




Invariant learning and environments

Intuitively, the target is to learn the common rule on different environments

P(Y|®(X),E =€) = P(Y|®(X),E = ¢),Ve,e’ €E.




Invariant learning and environments

Formally, invariance is deduced by assumptions on the data generating process

@“> Xsp: the color green

Xiny: the shape “0”

P¢(Y|Xiny) :=P(Y|Xinv, £ = €) keeps invariant across different environments

Correlation between Y and X, is spurious, which changes across environments



Group invariant learning

 Limitation: we need the environment labels are known

« “Group invariant learning” extend IL to the case when environments are
unknown



Infer Environments for Invariant Learning
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Infer Environments for Invariant Learning
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Infer Environments for Invariant Learning
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“Groups’: posterior environments

Group invariant learning extend IL to the case when environments are unknown

Infer posterior environments (groups)
with knowledge about X, and Y




‘ “Groups’: posterior environments

Groups are different from priori environments

envs groups

(c) confounded [2; 25] (d) hybrid [39; 23]
\ - / @ Cannot be inferred without X,

We need new theory for group invariant learning



Highlight 1: Two group criteria

 Falsity exposure criterion:
Groups should fully expose the falsity of spurious correlations (informally)

Criterion 4.1 (Falsity Exposure). For any o(X;,)-measurable function A that satisfies Vg, ¢’ € G,
P(Y|h(Xsp),g9) = P(Y|h(Xsp), g’), it must satisfies P(Y |h(Xsp,)) = P(Y).

» Label balance criterion:
The label proportion between groups should be the same (informally)

Criterion 4.3 (Label Balance). For any g,¢’ € G and y,y’ € Y with non-zero P(Y = y|g),P(Y =
Y'|9),P(Y = y|g’) and P(Y = 4'|g’), the following equation holds.

P(Y = ylg)/P(Y =4'lg) =P(Y =ylg")/P(Y =¢'lg") 2)

Both criterion are necessary !



Highlight 2: Failures of existing methods

additional information
more

» less
Existing methods clustering X, clustering P(Y|X,,) majorl;y;mmo"ty
Falsity exposure No guarantee ?
Label balance No guarantee X ?

* \We focus on the majority/minority split (EIIL, ICML2021)

 On some dataset (e.g. colored-MNIST), the majority/minority split satisfy
both criteria

 In the presence of multivariate spurious features, it fails both criteria



Highlight 3: a new method SCILL

- Same as EIIL, it relies on a reference model f; which approximates P¢(Y| X))

* For falsity exposure:
Construct groups such thatY 1 f.(X)| g

 For label balance:
Attach a weight w?(y) :=P(Y =y)/P(Y = y|g) to samples in group g.

» Learning objective: L£(f) =) RI(f)+ A penalty({S,(f)}seq)

gegyg



Highlight 3: a new method SCILL

 Sufficiency of SCILL:

Theorem 5.1. If G satisfies fX(X) 1L Ylg, Vg € G, where f* : X — Y is spurious-only, i.e.
0 (Xsp)-measurable, and minimizes the prediction loss L7, = E[)_ P(Y = y|X)log f.-(X),], the

optimal model minimizing the objective (3) satisfies SFC.

SCILL can survive spurious correlations with an ideal reference model



Experimental Results

Patched-Colored-MNIST MNLI-HANS
(PC-MNIST)
Lexical overlap ‘ Subsequence Constituent
100% - |
Heuristic Supporting Contradicting % ‘ o
Cases Cases . 220; BTER RERE RERAL:
(&)
Lexical overlap 2,158 261 % o |
Subsequence 1,274 12 < 75%- ‘ g
Constituent 1,004 58 | B | e g
22"2:777— TT'.'_TT-!E
FASE TASE TS
Two spurious features: on MNLI, multiple syntactic

color and patch features and ERM models fail on HANS

the labels have spurious
correlations.



Experimental Results

Patched-Colored-MNIST(PC-MNIST)

ID Oracle TEV
Method | Penalty Val Test ‘ Val Test { Val Test
ERM | - | 9022+056 50.64+056 | 89.95+045 54.53 +£0.60 | - -

IRM 90.21 + 048 50.63 +045 | 78.01 +045 63.63 +0.71 | 69.81 +027 50.99 +0.58
EIIL REx 90.24 +045 51.21 +064 | 79.10 043 64.04 +0.80 | 70.05 £023 51.01 +0.68
cMMD | 90.24 + 043 51.36 +0.61 | 77.27 £028 65.09 +063 | 70.15 +£025 52.70 +1.40
PGI 90.19 + 046 51.07 +054 | 80.03 =141 64.27 +026 | 70.37 +0.14 50.64 +0.38
IRM 79.65 +£076 6249 +055 | 71.54 +035 67.46 +0.19 | 71.54 £035 67.46 +0.19
SCILL REx 80.23 +083 162.13 +099 | 72.59 + 144 67.60 +024 | 70.77 £050 67.33 +0.30
cMMD | 83.13+093 59.76 +£0.92 | 73.12 +047 6749 +052 | 72.38 +051 67.81 +0.34
PGI 80.67 +1.75 162,52 +032 | 71.73 +£143 67.26 +0.14 | 71.35 £+ 024 67.36 +0.33

Across 4 invariance penalties and 3 selection protocols, SCILL shows significant improvement



Experimental Results

MNLI-HANS
Oracle TEV
Method | Penalty Val Test Val Test Val Test
ERM | - |8412+o015 64.88+3.00 | 84.12+£015 64.88 £3.00 | - -

IRM 84.01 £008 65.35 +093 | 83.82 +0.17 66.42 +098 | 84.01 +0.08 65.35 +0.93
EIIL REx 84.10 +£0.13 65.16 £0.19 | 83.91 +020 66.87 +292 | 84.00 £ 048 66.43 + 1.00
cMMD | 83.56 +£0.03 6322 +1.76 | 83.22 +0.13 64.25 +1.63 | 83.38 £020 62.72 +2.03
PGI 84.17 £ 008 65.57 +£225 | 83.78 +0.03 66.02 +093 | 83.94 +0.64 65.57 +£2.25
IRM 82.75 +£0.17 69.11 +1.76 | 82.56 +033 68.72 +1.24 | 82.67 +0.14  69.82 +1.29
SCILL REx 82.68 +028 69.73 +1.63 | 82.59 +022 71.20 +1.81 | 82.56 £033 | 69.75 +1.53
cMMD | 82.74 +026 69.15 +1.39 | 82.39 +045 70.77 +1.40 | 82.61 £0.04  70.92 +0.79
PGI 82.79 £ 030 68.57 +054 | 81.69 +028 70.99 +0.48 | 82.79 +0.30  68.57 +0.54

Across 4 invariance penalties and 3 selection protocols, SCILL shows significant improvement



Conclusion

« The first theoretical study on group invariant learning
« Two criteria for group invariant learning to survive spurious correlations
 Failures of existing methods on multivariate spurious features

 New method guided by the two criteria: SCILL

Code is available at:
https://github.com/Beastlyprime/group

-invariant-learning
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Thanks for Your Attention!



