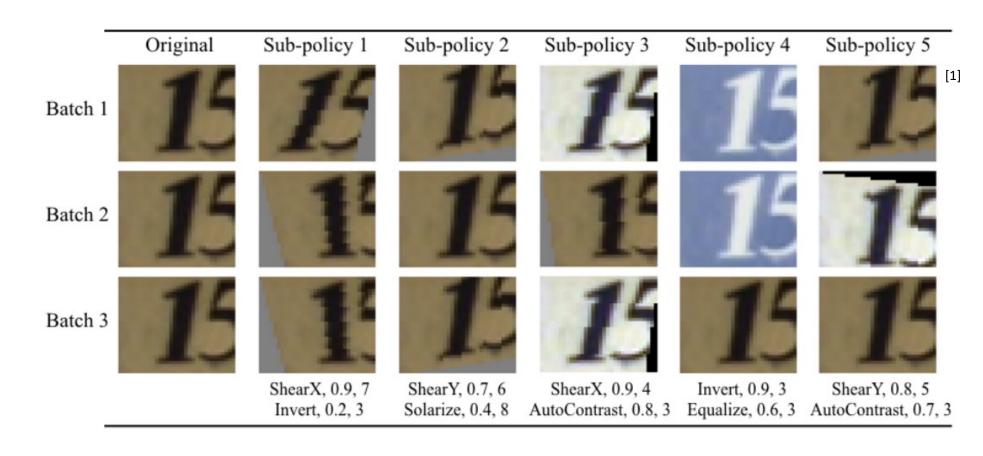
Adversarial Auto-Augment with Label Preservation: A Representation Learning Principle Guided Approach

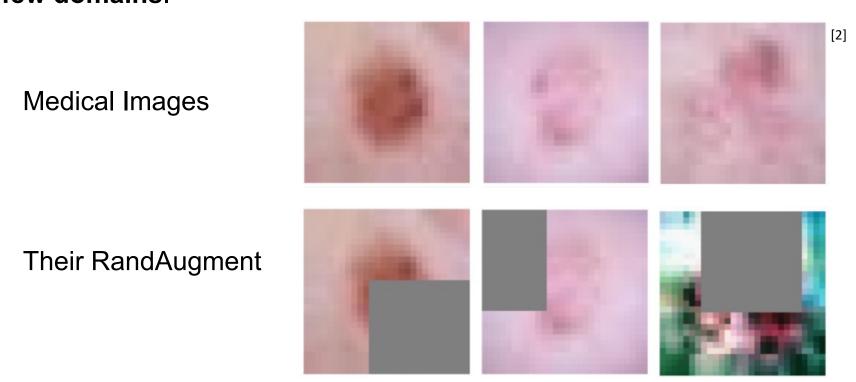
Kaiwen Yang, Yanchao Suns, Jiahao Su, Fengxiang He, Xinmei Tian, Furong Huang, Tianyi Zhou, Dacheng Tao

Problem of current data augmentations

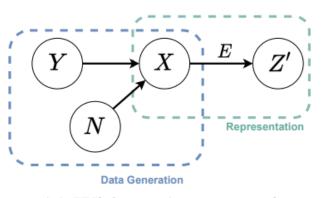
They are based on pre-defined operations and are not fully automated.

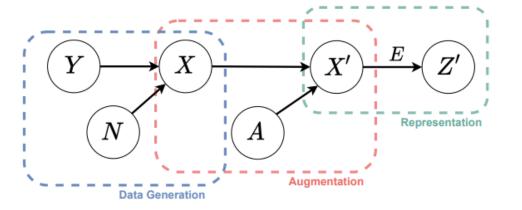


 They rely on domain knowledge to preserve label and are thus restricted to few domains.



Preliminary: representation learning with data augmentation





(a) Without Augmentation

(b) With Augmentation

Figure 1: Probabilistic graphical models of representation learning.

X: data observation

Y: label

N: nuisance part in data, which is independent to label

Z': low-dimensional representation of data (mapped by an encoder E)

A: augmentation selection

X': augmented data

What is a good representation?

Definition 4.0.1 (ϵ -Minimal Sufficient Representation (ϵ -Optimal Representation)). For a Markov chain $\mathbf{Y} \to \mathbf{X} \to \mathbf{Z}$, we say that a representation \mathbf{Z} of \mathbf{X} is sufficient for \mathbf{Y} if $I(\mathbf{Z} \wedge \mathbf{Y}) = I(\mathbf{X} \wedge \mathbf{Y})$, and \mathbf{Z} is ϵ -minimal sufficient for \mathbf{Y} if \mathbf{Z} is sufficient and $I(\mathbf{Z} \wedge \mathbf{X}) \leq I(\tilde{\mathbf{Z}} \wedge \mathbf{X}) + \epsilon$ for all $\tilde{\mathbf{Z}}$ satisfying $I(\tilde{\mathbf{Z}} \wedge \mathbf{Y}) = I(\mathbf{X} \wedge \mathbf{Y})$.

Sufficiency: should contain **all** the information about label *Y*.

Minimality: should contain as **little** information as possible about data *X*.

Proper data augmentation leads to optimal representation

Theorem 4.2. Consider label variable \mathbf{Y} , observation variable \mathbf{X} and nuisance variable \mathbf{N} satisfying Assumption 4.1. Let \mathbf{A} be the augmentation variable, \mathbf{X}' be the augmented data, and \mathbf{Z}^* be the solution to

$$\underset{\text{subject to}}{\operatorname{argmax}_{\mathbf{Z}'}} \quad I(\mathbf{Z}' \wedge \mathbf{X}') \text{ or } I(\mathbf{Z}' \wedge \mathbf{Y})$$

$$subject \text{ to} \quad I(\mathbf{Z}' \wedge \mathbf{A}) = 0.$$

Then, \mathbf{Z}^* is a ϵ -minimal sufficient representation of \mathbf{X} for label \mathbf{Y} if the following conditions hold: Condition (a): $I(\mathbf{X}' \wedge \mathbf{Y}) = I(\mathbf{X} \wedge \mathbf{Y})$ (\mathbf{X}' is an in-class augmentation) and Condition (b): $I(\mathbf{X}' \wedge \mathbf{N}) \leq \epsilon$ (\mathbf{X}' does not remain much information about \mathbf{N}).

Label-preservation: keep all the label-relevant information in augmentation

Adversary: maximally perturbs the label-irrelevant information

Label-Preserving Adversarial Auto-Augment (LPA3)

Initial optimization problem:

$$\min_{\mathbf{X}'} I(\mathbf{X}' \wedge \mathbf{X})$$
 s.t. $I(\mathbf{X}' \wedge \mathbf{Y}) = I(\mathbf{X} \wedge \mathbf{Y})$.

 $X \longrightarrow E \longrightarrow Z \longrightarrow M \longrightarrow Y$ $F(\cdot; \theta)$

Figure 2: Network architecture.

Implementation of mutual information:

Constraint term: $\log F(x';\theta)[y] = \log F(x;\theta)[y]$ (Neural network classification result)

Objective term: LPIPS $(x, x') \triangleq \|\phi(x) - \phi(x')\|_2$. (Neural network midden-layer features)

The final optimization problem:

$$\min_{x'} - \|\phi(x) - \phi(x')\|_2 + \lambda \max(0, \log F(x; \theta)[y] - \log F(x'; \theta)[y] - \sigma)$$

Algorithm 1 Plug LP-A3 into any representation learning procedure

Input: Loss for the targeted task $L: \mathcal{X} \times \mathcal{Y} \times \mathcal{W} \to \mathcal{R}_+$; training data $(\mathcal{X}, \mathcal{Y})$; neural network $F(\cdot; \theta)$; class preserving margin ϵ ; data selection ratio τ ; learning rate η ;

Output: Model parameter θ trained with LP-A3

1: while not converged do

: Sample batch $\mathcal{B} = \{(x_1, y_1), ..., (x_b, y_b)\} \sim (\mathcal{X}, \mathcal{Y});$

3: Data selection: $S \leftarrow \tau\%$ data with the lowest TCS in B;

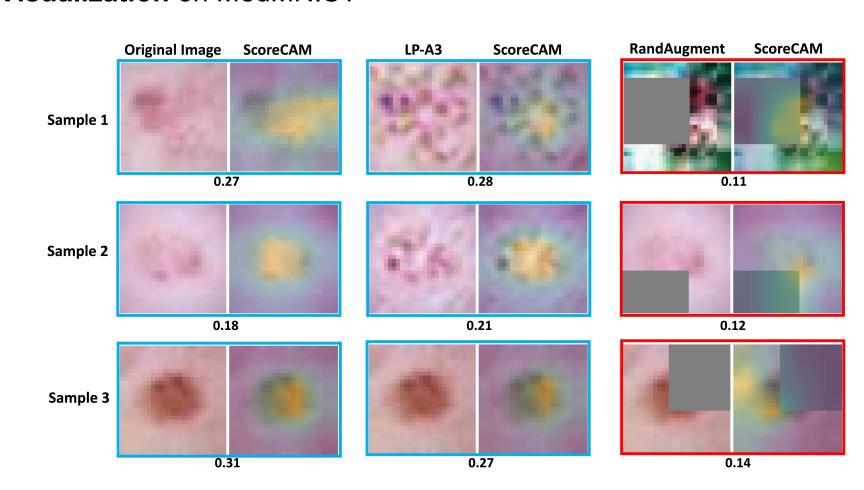
LP-A3: Freeze θ and solve Equation (5) using Algorithm 2 for every sample in S, resulting in an augmented set $A = \{(x'_1, y_1), ..., (x'_m, y_m)\}$ of size m = |S|;

5: Learning with LP-A3 augmented data and original data: $\theta \leftarrow \theta - \eta [\nabla_{\theta} L(\mathcal{B}; \theta) + \nabla_{\theta} L(\mathcal{A}; \theta)];$

6: end while

Experimental Results

Visualization on MedMNIST



Semi-supervised learning

Dataset	CIFAR10			CIFAR100			STL-10
# Label	40	250	4000	400	2500	10000	1000
InfoMin (RGB) [40] InfoMin (YDbDr) [40]	-				-	-	86.0 87.0
FixMatch [36] [§] FixMatch [36] + LP-A3	89.51±3.14 92.39 ± 1.21	93.81±0.29 94.03 ± 0.31	94.66±0.13 95.11 ± 0.17	49.30±2.45 56.16±1.82	67.21 ± 0.94 72.23 ± 0.57	74.31 ± 0.35 77.11 ± 0.16	91.59±0.16 92.63 ± 0.14

Noisy-label learning

Dataset	CIFAR10			CIFAR100			
Noise Ratio	50%	80%	90%	50%	80%	90%	
Mixup [56] P-correction [54] M-correlation [3]	87.1	71.6	52.2	57.3	30.8	14.6	
	88.7	76.5	58.2	56.4	20.7	8.8	
	88.8	76.1	58.3	58.0	40.1	14.3	
DivideMix [26] DivideMix+LP-A3	94.4	92.9	75.4	74.2	59.6	31.0	
	94.89±0.05	93.70±0.19	79.35±1.33	74.12±0.23	61.00±0.34	32.55±0.25	
PES [§] [5]	94.89±0.12	92.15±0.23	84.98±0.36	74.19±0.23	61.47±0.38	21.15±3.15	
PES+LP-A3	95.10 ± 0.14	93.26±0.21	87.71 ± 0.36	74.57 ± 0.25	62.98 ± 0.49	40.61±1.10	

Medical image classification

Method	PathMNIST	DermaMNIST	TissueMNIST	BloodMNIST
ResNet-18	94.34±0.18	76.14±0.09	68.28±0.17	96.81±0.19
ResNet-18+RandAugment	93.52±0.09	73.71±0.33	62.03±0.14	95.00±0.21
ResNet-18+LP-A3	94.42 ± 0.24	76.22 ± 0.27	68.63 ± 0.14	96.97 ± 0.06
ResNet-50	94.47±0.38	75.24 ± 0.27 71.65 ± 0.30 75.71 \pm 0.22	69.69±0.23	96.91±0.06
ResNet-50+RandAugment	94.02±0.37		65.13±0.33	95.14±0.06
ResNet-50+LP-A3	94.57 ± 0.07		69.89 ± 0.08	97.01 ± 0.32
ResNet-18 ResNet-18+RandAugment ResNet-18+LP-A3	OctMNIST 78.67±0.26 76.00±0.24 80.27 ± 0.54	OrganAMNIST 94.21±0.09 94.18±0.20 94.73 ± 0.21	OrganCMNIST 91.81±0.12 91.38±0.14 92.41 ± 0.22	OrganSMNIST 81.57 ± 0.07 80.52 ± 0.32 82.28 ± 0.38
ResNet-50	78.37±0.52	94.31±0.14	91.80±0.14	81.11±0.21
ResNet-50+RandAugment	76.63±0.58	94.59±0.17	91.10±0.12	80.47±0.37
ResNet-50+LP-A3	79.40 ± 0.36	94.95 ± 0.19	92.16 ± 0.23	82.15 ± 0.08