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Graph

● 𝒢 = (V, E) is a pair comprising a finite set of |V|=N nodes and |E| edges.
● A graph can be represented by an adjacency matrix A.

Introduction

Problem Definition

● Given a set of observed graphs G = {𝒢1, ...𝒢S } sampled from data distribution p(G), the goal of 
learning generative models for graphs is to learn the distribution of pθ (G) which is similar to p(G).

● The focus of this paper is on models for generating “realistic-looking” graphs.

Samples from Protein dataset (real data). Samples from Grid dataset (synthetic benchmark).



Deep Graph Generative Models (GGMs)

1) All-at-once Models

 Generate a graph, adjacency matrix, in one-shot.

Related Work

2) Autoregressive Models

Generate a graph sequentially,  an edge, node, or block at a time.

GraphRNN (You et al 2018)

GRAN (Liao et al 2019)

BiGG (Dai et al 2020)

VGAE(Kipf et al 2018)

MolGAN (Cao et al 2018)

GraphVAE (Dai et al 2018)

● All-at-once models have fast and tractable sampling and relatively stable training.

● Sequential graph generation allows  autoregressive models to capture complex dependencies between new 

edges/nodes and edges/nodes already generated.



Global and Local Graph Properties

Motivation

● Most deep GGMs are trained with an objective based on local properties.
○ Local properties does not model different edge roles in the graph global structure.

● Two levels of information:
1) Local node-level properties
2) Global graph-level properties



Global and Local Graph Properties (example)

Motivation

Original Graph

Generated Graph 1

Generated Graph 2

The two right graphs score the same in terms of number of 
reconstructed edges, however the Graph 1, is structurally 
more similar to the Original Graph.



Learning objectives

The proposed model

Graph generative models

Matching global graph-level properties Matching local node-level properties

Deep GGMsExponential random graph 
models This paper



Approach

● Micro-macro (MM) Modeling: 
○ A principled probabilistic framework that incorporates both local 

(Micro) and global (Macro) graph properties.

The proposed model
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(Micro) and global (Macro) graph properties.
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L0 : micro loss.

L1 : macro  loss. 

A: training graph.
m: number of global 
properties.
F

u
: random variable 

defined by φu(Â).
𝜸: hyperparameter.
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● Micro-macro (MM) Modeling: 
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(Micro) and global (Macro) graph properties.
○ Assuming a predefined finite set of graph global statistics/properties, 

calculated by φ1(), …, φm()   micro-macro loss is of the form:
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● Advantages:
○ Realism: Compared to objective functions that are based on predicting local properties, 

matching graph statistics serves as a regularizer that increases the realism of the 
generated graph structures

○ User control:  the user only needs to specify the target graph statistics and learning will 
automatically select graph models that match them.
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m: number of global 
properties.
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GraphVAE-MM

● This paper works with negative log-likelihood losses:

The proposed model

L0 : micro loss.

L1 : macro  loss. 

A: training graph.
Ã: underlying probabilistic adjacency matrix.
F

u
: random variable defined by φu(Â).

𝜸: hyperparameter.
z: graph embedding.
Ãz: probabilistic adjacency matrix computed 
as a function of graph embedding z.
m: number of target statistic.
|F
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|: dimensionality of target statistic F
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GraphVAE-MM

● This paper works with negative log-likelihood losses:

● By approximating with variational Lower bound we have:

The proposed model

L0 : micro loss.

L1 : macro  loss. 

A: training graph.
Ã: underlying probabilistic adjacency matrix.
F

u
: random variable defined by φu(Â).

𝜸: hyperparameter.
z: graph embedding.
Ãz: probabilistic adjacency matrix computed 
as a function of graph embedding z.
m: number of global properties.
|F

u
|: dimensionality of target statistic F

u
.



Graph Statistics

The proposed model

● GraphVAE-MM: We utilize the micro-macro objective to improve graph generation with a 
GraphVAE (Dai et al 2018) architecture.



Graph Statistics

● In our experiments, we utilize 3 default graph global properties:
○ Degree histogram 
○ Number of triangles  
○ S-Step transition probability  for S=2,...,5

The proposed model

● GraphVAE-MM: We utilize the micro-macro objective to improve graph generation with a 
GraphVAE (Dai et al 2018) architecture.



Qualitative Evaluation

● GraphVAE–MM achieves  much better visual match than GraphVAE.

Experiments
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Quantitative Evaluation (GNN-based evaluation metrics Thompson et al 2022)

● MMD RBF and F1 PR capture the reality and diversity of generated graphs, respectively.
● Impact on GraphVAE. MM modeling provides a large improvement in the realism and 

diversity of graphs generated by a GraphVAE architecture.
● GraphVAE-MM vs. Benchmark GGMs. Micro-macro (MM) modeling greatly improved the 

GraphVAE, to match or exceed that of benchmark models.

Experiments



Quantitative Evaluation (statistic-based evaluation metrics O’Bray et al 2022)

Experiments



Generation and Train Time

● Generation time. The autoregressive methods require substantially more generation time.
● Training time overhead. The training time is still less than for the autoregressive methods.

Experiments



Conclusion
● This paper proposes a new multi-level framework that jointly models 

node-level properties and graph-level properties, as mutually reinforcing 
sources of information.

● We derive a joint ELBO as a new micro-macro objective function for training 
graph encoder-decoder models.

● Our experiments show that adding micro-macro modeling to the GraphVAE 
model improves graph quality scores up to 2 orders of magnitude while 
maintaining the GraphVAE generation speed advantage.

 


