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Introduction
Graph

e %= (V, E)is a pair comprising a finite set of |V|=N nodes and |E| edges.
e Agraph can be represented by an adjacency matrix A.

Problem Definition

e Given a set of observed graphs G = {¥, ... 4.} sampled from data distribution p(G), the goal of
learning generative models for graphs is to learn the distribution of p, (G) which is similar to p(G).
e The focus of this paper is on models for generating “realistic-looking” graphs.
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Samples from Protein dataset (real data). Samples from Grid dataset (synthetic benchmark).



Related Work

Deep Graph Generative Models (GGMs)

1) All-at-once Models 2) Autoregressive Models
Generate a graph, adjacency matrix, in one-shot. Generate a graph sequentially, an edge, node, or block at a time.
= BePD e
VGAE(Kipf et al 2018) GraphRNN (You et al 2018)
MolGAN (Cao et al 2018) GRAN (Liao et al 2019)
GraphVAE (Dai et al 2018) BiGG (Dai et al 2020)

e All-at-once models have fast and tractable sampling and relatively stable training.
e Sequential graph generation allows autoregressive models to capture complex dependencies between new
edges/nodes and edges/nodes already generated.



Motivation

Global and Local Graph Properties [ Global Properties:

Clustering coefficient
, ; Degree distribution —
— ) Euler path

e Two levels of information: \ / ] \

1) Local node-level properties () O
2) Global graph-level properties \ : /_/f ert

e Most deep GGMs are trained with an objective based on local properties.
o Local properties does not model different edge roles in the graph global structure.



Motivation

Global and Local Graph Properties (example)

Generated Graph 1

Original Graph
The two right graphs score the same in terms of number of
reconstructed edges, however the Graph 1, is structurally

more similar to the Original Graph.
g P Generated Graph 2



The proposed model

Learning objectives

[ Graph generative models }

[ Matching global graph-level properties } [ Matching local node-level properties }

~

Exponential random graph This paper Deep GGMs
models




The proposed model

Approach

e Micro-macro (MM) Modeling:
o A principled probabilistic framework that incorporates both local
(Micro) and global (Macro) graph properties.



The proposed model

ApproaCh L°: micro loss.
L':macro loss.
e Micro-macro (MM) Modeling: A: training graph.
o A principled probabilistic framework that incorporates both local m: number of global

rties.
(Micro) and global (Macro) graph properties. E:?faenégfn variable

o Assuming a predefined finite set of graph global statistics/properties, | defined by ¢ (A).
calculated by ¢.(), ..., @ _() micro-macro loss is of the form: v- hyperparameter.

Lo(A) = LY(A) +YLs(F1,...,F)



The proposed model

Approach L°: micro loss.
L': macro loss.
e Micro-macro (MM) Modeling: A: training graph.
o A principled probabilistic framework that incorporates both local m: number of global
) ) properties.
(Micro) and global (Macro) graph properties. E - random variable
o Assuming a predefined finite set of graph global statistics/properties, defined by ¢, (A).
calculated by ¢.(), ..., ®_() micro-macro loss is of the form: v- hyperparameter.

Lo(A) = LUA) ALy (F1; .5 Fin)
e Advantages:

o Realism: Compared to objective functions that are based on predicting local properties,
matching graph statistics serves as a regularizer that increases the realism of the
generated graph structures

o User control: the user only needs to specify the target graph statistics and learning will
automatically select graph models that match them.



The proposed model

GraphVAE-MM

e This paper works with negative log-likelihood losses:

[:%(A) = —In p?/)(A) = — ln/ P(A|A,)p(z)dz
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LO%: micro loss.
L1: macro loss.
A: training graph.

A: underlying probabilistic adjacency matrix.
F :random variable defined by (pu(i\).

y: hyperparameter.

z: graph embedding.

AZ: probabilistic adjacency matrix computed
as a function of graph embedding z.

m: number of target statistic.

|F|: dimensionality of target statistic F .




The proposed model

GraphVAE-MM

e This paper works with negative log-likelihood losses:

E?,,(A) = —In p?/)(A) = — ln/ P(A|A,)p(z)dz

Ly By e B == Z

u=1

lllpfp’a(Fu)

e By approximating with variational Lower bound we have:

[,g(A) S Ezqu(ﬂA)[ lIlp,L/) A|A

|1M§

L°: micro loss.

L': macro loss.

A: training graph.

A: underlying probabilistic adjacency matrix.
F : random variable defined by (pu(A).

y: hyperparameter.

z: graph embedding.

i\z: probabilistic adjacency matrix computed
as a function of graph embedding z.

m: number of global properties.

|F,|: dimensionality of target statistic F .

wo(Fu)] + (1 +ym)KL(gp(2|A)|Ip(2))




The proposed model

Graph Statistics

e GraphVAE-MM: We utilize the micro-macro objective to improve graph generation with a
GraphVAE (Dai et al 2018) architecture.



The proposed model

Graph Statistics

e GraphVAE-MM: We utilize the micro-macro objective to improve graph generation with a
GraphVAE (Dai et al 2018) architecture.

e In our experiments, we utilize 3 default graph global properties:
o Degree histogram
o Number of triangles
o S-Step transition probability for S=2,...,5



Experiments

Qualitative Evaluation
Triangle Grid Lobster Grid Protein

Test

-------

GraphVAE-MM  GraphVAE

e GraphVAE-MM achieves much better visual match than GraphVAE.



Experiments

Quantitative Evaluation (GNN-based evaluation metrics Thompson et al 2022)

Method Triangle Grid Lobster Grid ogbg-molbbbp Protein

MMD RBF FI PR MMD RBF FI PR MMD RBF F1 PR MMD RBF FI PR MMD RBF F1 PR
50/50 split 0.03+000 98.58+0.00 0.04+0.00 9858+0.00 0.009+0.00 98.70+0.00 0.002+0.00 98.07+0.00 0.04-+000 98.67+1.11
GraphVAE 0.23+0.01 7592+896 036+0.11 7848+24.13 0.17+001 7552+253 020+0.07 5453+6.15 0.10+0.05 8411 +9.56
GraphVAE-MM 0.17 +0.01 8358 +550 0.10+0.00 100.00+0.00 0131001 97.09+633 0021001 93.78+133 003+0.01 90.78+3.76

GraphRNN-S (You etal. 2018) 0.72 +0.17 33.68 +1944 098 +0.13 5872 +755 0.79+0.08 71.18+236 0481+0.02 81.41+0.71 0.28+0.26 72.36+ 27.63
GraphRNN (You et al. 2018) 064 1011 258011175 0871004 61971000 0991003 13221005 1451019 98941056 0321014 93.9410.56
GRAN (Liao et al. 2019b) 0881009 23.714+9.72 0241+0.04 5053+1212 040+£0.00 78731002 039+L0.07 94061260 0.07L0.00 98.0510.76
BiGG (Dai ct al. 2020) 0.41 £0.13  62.08+0.14 0.12£0.00 99.74+£0.76 035000 92434+0.00 0.04+0.00 96.16+0.31 0.15E£0.00 98.11 +0.62

e MMD RBF and F1 PR capture the reality and diversity of generated graphs, respectively.

e Impact on GraphVAE. MM modeling provides a large improvement in the realism and
diversity of graphs generated by a GraphVAE architecture.

e GraphVAE-MM vs. Benchmark GGMs. Micro-macro (MM) modeling greatly improved the
GraphVAE, to match or exceed that of benchmark models.



Experiments

Quantitative Evaluation (statistic-based evaluation metrics o'Bray et al 2022)
(a) Synthetic Graphs

Method Triangle Grid Lobster Grid

Deg. Clus. Orbit  Spect Diam. Deg. Clus.  Orbit  Spect Diam. Deg. Clus.  Orbit  Spect  Diam.
50/50 split 3¢7° 0002 8¢®  0.004 0.014 0.002 0 0.002 0.005 0.032 1le® 0 2% 0.004 0.014
GraphVAE 0.0821 0.442 0421 0.020 0.152 0.081 0.739 0372 0.056 0.129 0.062 0.055 0.515 0.018 0.143
GraphVAE-MM 0.001  0.093 0.001 0.013 0.133 2 * 0 0.008 0.017 0.187 5¢* 0 0.001 0.014 0.065

GraphRNN-S (You etal. [47])  0.053  1.094 0.121 0.033 1.124 0016 0319 0285 0.045 0242 0.014 0003 0.09 0112 0.128
GraphRNN (You et al. [47]) 0.033 1.167 0.107 0.030 1121 0.004 0 0.033 0.035 0384 0.013 0166 0019 0.111 0.460

GRAN (Liao et al. {32]) 0134 0678 0.673 0184 1.133 0006 0304 0331 0.043 0446 0003 1e' 0007 0012 0.281
BiGG (Dai et al. [H]) 0.001 0.107 0.004 0020 1.123 0.001 0 6e * 0012 0101 0002 3¢ 0003 0018 0328
(b) Real Graphs

Protein ogbg-molbbbp
Mecthed Deg. Clus.  Orbit  Spect Diam.  Deg. Clus.  Orbit  Spect  Diam.
50/50 split 4> 0004 5¢* 4e* 0003 2% 25 9 5e!  0.002
GraphVAE 0.022 0.108 0577 0.016 0.080 0.028 0442 0.047 0.015 0.055
GraphVAE-MM 0.006 0.059 0.152 0.007 0091 0001 0.005 & * 0005 0.018

GraphRNN-S (You et al. [47]) 0.046 0.324 0316 0.028 0302 0016 0572 0.006 0.045 0.199
GraphRNN ((You et al. [47])  0.012 0.123 0.264 0.018 0342 0.002 9¢ % 4e* 0.135 0.495
GRAN (Liao et al. [32]) 0.003 0.059 0.053 0004 0009 0008 0353 0.013 00566 0317
BiGG (Dai et al. (1)) 0.007 0.099 0316 0.012 0181 0003 0001 5% 0007 0.033




Experiments

Generation and Train Time

Average Generation Time Per-Batch
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Generation time. The autoregressive methods require substantially more generation time.
Training time overhead. The training time is still less than for the autoregressive methods.




Conclusion

e This paper proposes a new multi-level framework that jointly models
node-level properties and graph-level properties, as mutually reinforcing
sources of information.

e \We derive a joint ELBO as a new micro-macro objective function for training
graph encoder-decoder models.

e Our experiments show that adding micro-macro modeling to the GraphVAE
model improves graph quality scores up to 2 orders of magnitude while
maintaining the GraphVAE generation speed advantage.



