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Matrix Approximation

Matrix Approximation Problem:
Given 1; = -+ = A4, A == diag(44, -+, 14),
Symmetric M € R**? with eigenvaluves g; = -+ > ¢4 and
diagonalization M = VIV T,

min_ ||[VAVT —VAVT ||¢

Veo(d)

*  Without differential privacy constraints, optimal solution is I/ = 1% [Schur, 1923; Horn, 1954]
* With differential privacy constraints, need to output “noisy” V to hide private information

Special cases:

* Rank-k covariance approximation: A; =0g;, [ <k
* Subspace Recovery: Ay =-=A, =1, Apyq==43=0

* Many applications to ML, statistics, medicine, engineering, etc.



Differential privacy

Applications:

” * Medical data
») * Census data
* etc.

Covariance matrix may contain sensitive information about individuals

Many examples of privacy breaches (e.g. Netflix problem)

Need algorithms which output approximations H that hide private information, while
still allowing researchers to learn from the data

(g, 6)-differential privacy (DP) [Dwork, ‘06]:
Given €, > 0, a randomized mechanism A is (&, §)-DP if for any
neighboring M, M', P|[A(M) € S] < exp(e) XP[AM"') € S|+ 6

(M,M" are “neighbors” if they differ by one datapoint: M' - M = x x*, some ||x]|| < 1)



Previous work: Utility Upper bounds

Many works give algorithms for private matrix approximation under
both (&, 0)-DP, e.g., iDwork, McSherry, Nissim, Smith, ‘06], [Hardt, Roth, *12, *13], and pure

(E ) 0)-DP, €.J., [Kapralov, Talwar, ‘13], [Amin,Dick, Kulesza, Munoz, Vassilvitskii ‘19], [Leake, McSwiggen,
Vishnoi, ‘21], [Mangoubi, Wu, Kale, Thakurta, Vishnoi, ‘22]

Best current utility upper bounds (w.r.t. Frobenius norm) under (&, 6)-DP
[Dwork, Talwar, Thakurta, Zhang ‘14] , based on GCIUSSiCIn mechanism Of [Dwork, Kenthapadi,

McSherry, Mironov, Naor, ‘06] ¢

* Rank-k covariance approximation: ||My — Mi||r < O(kVd) wh.p.

o ~ ( Jkd
* Subspace approximation: ||VkaT — VkaT“F <0 (G ~ ) w.h.p.
k=Ok+1

. 5(k \/E) utility bounds (for covariance approximation) not tight for all k, o: e.g., for
k = d, Gaussian mechanism gives ||M — M“F < 0(d) = 5(\/1;\/6_1)

* Roughly, linear-in-k dependence is because perturbations to top-k
eigenvectors are “added up” as a simple sum using trace inequalities

Can one obtain Vk improvement on utility for k < d, by adding up
perturbations as (the square root of) a sum-of-squares?



Algorithm: Gaussian Mechanism for Matrix Approximation
Input: M € R?*?, diagonal matrix A = diag(44, ..., 14)

1.Add noise M = G + G",  where G has iid N(0, e !logd) entries.
2. Post-process: Diagonalize M=VEVT
3. Output: H = VAV T

Main results: Utility bounds

Assumption(M): The top-k eigenvalues of M satisfy 0; — 0;.1 = Q(Vd) Vi<k

Theorem: For £, > 0,k € [d], and given A = diag(44, ..., Ag)and a symmetric
M € R%*% with eigenvalues 0; = -+ > 04 and diagonalization M = VIV T,
The above Gaussian Mechanism is (&, 8)-DP and outputs H = VAV T s.t., if
Assumption(M) holds, 4 O — A2
AT T T2 A Y
E [HVAV VAV ||F} <o % -

= 57, (00 —max(0j, 0541))

Corollary (covariance approximation): E[||VZkVT —V kaTllp] < 5(\/1;\/6_1 p—
k—Ok+1
* Improves by Vk on [Dwork et al‘14], if 0; — Oj1q1 = ﬁ(\/c_l) Vi<kandog, — 0,y = Q(0y)

2

Ok

Ok

Corollary (subspace recovery): E [||V, V) — 7 Vlelp] < 0(d

Ok—O0k+1
* Improves by Vk on [Dwork et al ‘14], if we also have 0j — Oj31 = 0 — 041 VI k



Dyson Brownian Motion

* View addition of Gaussian noise as a matrix-valued stochastic process

M) =M + B(t), t>0

« B(t)=W()+WT'(t)
* Each entry of W(t) is a standard Brownian Motion

* Diagonalize M(t) = U®)T()UT(t)
* Eigenvalues and eigenvectors evolve according to Stochastic
Differential Equations (SDE) discovered by [Dyson, ‘62]:

1
dyl(t) — dBll + Zl 1yl(t) )/](t)

. dB;; 1 dt . Tt
du;(£) = Xjai 5=, o W (O Zfilm(t) 0 i)

dt o)




Using Dyson’s SDEs to bound the utility
* Define projected process: W(t) = U(t)AU ' (t)
+ We want to bound |[W(T) — W(0)|I% = || [, dW(t) I3

Siep l use Dyson s equations to derive SDE for W(t):
ZZ y— 485 (0) (wi(t)u] () + uj(t) +ZZ (i — X)) dt wi(t)u] (t)

22 34(8) = 70 } 22 (iE) — 25 (0)2
Y

devi; (1)
» dW¥(t) is a sum of independent random terms da;; (t):

da;;j(t) independent for all i, j, and independent of past times t

T ..
* Their time-integrals fo daij (t)are not independent for all i, j!

Step 2: Use independence to “add up” Frobenius norms of da;;(t) as sum-
of-squares. Then use Ito’s Lemma to integrate Frobenius norm over time:

E[|[(T) — ¥ (0)]|7] —2/ [ZZ O dt] +T/O E {Z (Z (%(SZQJ@P) }dt.

i=1 j# i=1 \ j#1¢

Step 3: Use Weyl’s inequality to bound eigenvalue gaps:
() =y 20, —0; — |[BOI|, 25 (6;—0) whp.,
as long as 0; — 044 >+d Vi<k.



Conclusion

Introduced new method of analyzing addition of noise by Gaussian
mechanism as a matrix-valued Brownian motion

* In special case of rank-k covariance approximation (A; = g; , i < k) under
(g, 8)-DP, implies vk improvement on utility bound E ”|Mk — Mk” ] if
F

eigenvalues of M satisfy 0; — 0,1 = ﬁ(\/c_l) ,1 <k and g, — 01,41 = Q(0y)

* In special case of subspace recovery (1; =1, i < k) under (&,6)-DP,
implies Vk improvement on utility bound E ”leV;;r — VkV,;r” ] if
F

eigenvalues of M also satisfy 0; — 0j.1 = 01, — Oppq, [ < Kk
g Y O i+1 k k+1

Open problem: Can one obtain similar utility bounds without
assumption that 0; — 0j11 = Vd Vi<k?




