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• Vehicle Routing Problem (VRP) is a class of NP-hard combinatorial optimization problems.
• Two representative VRPs: TSP and CVRP

An example for Traveling Salesman Problem (TSP)                     An example for Capacitated Vehicle Routing Problem (CVRP)

?

PROBLEM DEFINITION: We define VRPs over a complete graph G = {V, E}, where vi ∈ V represents the (customer) node, e(vi, vj ) ∈ E represents the 
edge between two nodes. C[e(vi, vj )] represents the cost (we use length in this paper) of the edge. By referring tour τ (a.k.a. solution) to a permutation of 
nodes in V, the objective is usually to find the optimal tour τ∗  with the least total cost (length) over a finite searchspace S containing all possible 
tours.
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• Various practical applications: freight delivery, last-mile logistics, ride-hailing and etc.
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•  Recent neural methods for vehicle routing problems always train and test the deep models on the same instance 
distribution (i.e., uniform). 

• Cross-distribution generalization issue: when the learned policy (trained on uniform distribution) is applied to infer the 
out-of-distribution (OoD) instances, the solution quality is usually low. 

Figure 1: VRP instances following various distributions from the literature: (a) gr137, (b) lin105, (c) att532, (d) pr136, (e) X-n125-k30, (f) bier127, (g) 
Tai150d, (h) Uniform, (i) Cluster, (j) Mixed, (k) Expansion, (l) Implosion, (m) Explosion, (n) Grid, where instances (a)-(g) are from TSPLIB and CVRPLIB. 
In this paper, we consider instances following distributions (h)-(j) for training and other unseen distributions (k)-(n), as well as unseen benchmark datasets 

for testing.
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• To tackle the cross-distribution generalization concerns, we bring the knowledge distillation to this field 
and propose an Adaptive Multi-Distribution Knowledge Distillation scheme for learning more 
generalizable deep models.
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• Three stages: teacher pre-training, student training and inference.

Figure 2: Framework of our 
AMDKD scheme. 

From left to right: teacher 
pre-training, student training 

and inference. 

The Uniform is selected as 
the current exemplar 

distribution for an example.
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•  Effectiveness analysis of AMDKD

1. reduce the size of the teacher model from 0.68 to 0.26 M (a 61.8% reduction) for AM and from 1.20 to 0.49 M (a 59.2% 
reduction) for POMO;

2. improve overall performance for both TSP and CVRP on all the three sizes.
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• Generalization analysis of AMDKD

baselines

deep models

AM
POMO
DACT
LCP

other methods 
specialized for 
generalization

HAC
DROP
GANCO
PSRO (a.k.a LIH)
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cross-distribution 
generalization issue

AMDKD

model-agnostic; generic for all deep models

consume less computational resources

exhibit competitive performance in generalizing 
to other unseen out-of-distribution instances

1) generalizing AMDKD for different/larger problem sizes; 

2) considering the improvement models like DACT as the backbone; 

3) performing online distillation to jointly and efficiently train the teachers and the student models; 

4) assessing the impact of the quality of the validation dataset on the distillation; 

5) enhancing the interpretability of AMDKD .

Future 
work
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