

CARD: CLASSIFICATION AND REGRESSION DIFFUSION MODELS

XIZEWEN HAN, HUANGJIE ZHENG & MINGYUAN ZHOU

Department of Statistics and Data Sciences & McCombs School of Business, The University of Texas at Austin

Modeling $P(y \mid x)$ instead of $\mathbb{E}(y \mid x)$

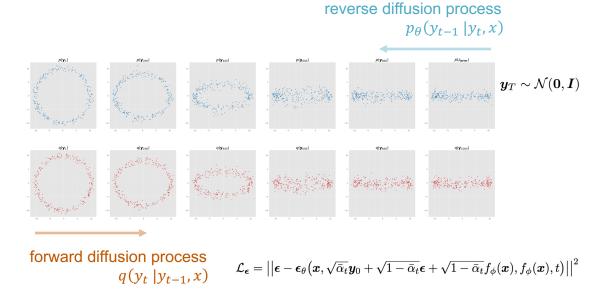
How do we model $P(y \mid x)$, the *conditional distribution* of a continuous or categorical response variable y given its covariates x, if we are interested in more than a point estimate of the conditional mean $\mathbb{E}(y \mid x)$?

Potential scenarios:

- Uncertainty estimation plays an important role for the problem in hand
- $P(y \mid x)$ is multi-modal, e.g., when there are missing covariates in x

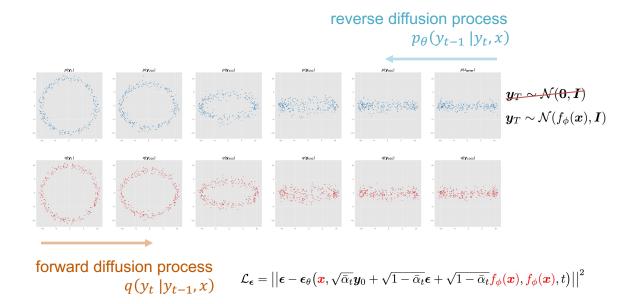
Modeling $P(y \mid x)$ instead of $\mathbb{E}(y \mid x)$

Denoising Diffusion Probabilistic Models (Ho et al., 2020)

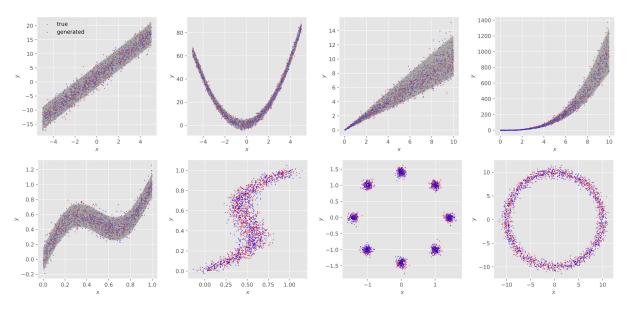


Modeling $P(y \mid x)$ instead of $\mathbb{E}(y \mid x)$

CARD



Regression



Regression toy example scatter plots.

(**Top**) left to right: linear regression, quadratic regression, log-log linear regression, log-log cubic regression; (**Bottom**) left to right: sinusoidal regression, inverse sinusoidal regression, 8 Gaussians, full circle.

Regression

Dataset	RMSE ↓						
	PBP	MC Dropout	Deep Ensembles	GCDS	CARD (ours)		
Boston	2.89 ± 0.74	3.06 ± 0.96	3.17 ± 1.05	2.75 ± 0.58	2.61 ± 0.63		
Concrete	5.55 ± 0.46	5.09 ± 0.60	4.91 ± 0.47	5.39 ± 0.55	4.77 ± 0.46		
Energy	1.58 ± 0.21	1.70 ± 0.22	2.02 ± 0.32	0.64 ± 0.09	0.52 ± 0.07		
Kin8nm ¹	9.42 ± 0.29	7.10 ± 0.26	8.65 ± 0.47	8.88 ± 0.42	6.32 ± 0.18		
Naval ²	0.41 ± 0.08	0.08 ± 0.03	0.09 ± 0.01	0.14 ± 0.05	0.02 ± 0.00		
Power	4.10 ± 0.15	4.04 ± 0.14	4.02 ± 0.15	4.11 ± 0.16	3.93 ± 0.17		
Protein	4.65 ± 0.02	4.16 ± 0.12	4.45 ± 0.02	4.50 ± 0.02	3.73 ± 0.01		
Wine	0.64 ± 0.04	0.62 ± 0.04	0.63 ± 0.04	0.66 ± 0.04	0.63 ± 0.04		
Yacht	0.88 ± 0.22	0.84 ± 0.27	1.19 ± 0.49	0.79 ± 0.26	0.65 ± 0.25		
Year	8.86± NA	$8.77 \pm NA$	$8.79\pm$ NA	$9.20\pm$ NA	$8.70\pm \mathrm{NA}$		
# best	0	1	0	0	9		

Dataset	NLL ↓					
	PBP	MC Dropout	Deep Ensembles	GCDS	CARD (ours)	
Boston	2.53 ± 0.27	2.46 ± 0.12	2.35 ± 0.16	18.66 ± 8.92	2.35 ± 0.12	
Concrete	3.19 ± 0.05	3.21 ± 0.18	$\boldsymbol{2.93 \pm 0.12}$	13.64 ± 6.88	2.96 ± 0.09	
Energy	2.05 ± 0.05	1.50 ± 0.11	1.40 ± 0.27	1.46 ± 0.72	1.04 ± 0.06	
Kin8nm	-0.83 ± 0.02	-1.14 ± 0.05	-1.06 ± 0.02	-0.38 ± 0.36	-1.32 ± 0.02	
Naval	-3.97 ± 0.10	-4.45 ± 0.38	-5.94 ± 0.10	-5.06 ± 0.48	-7.54 ± 0.05	
Power	2.92 ± 0.02	2.90 ± 0.03	2.89 ± 0.02	2.83 ± 0.06	$\boldsymbol{2.82 \pm 0.02}$	
Protein	3.05 ± 0.00	2.80 ± 0.08	2.89 ± 0.02	2.81 ± 0.09	2.49 ± 0.03	
Wine	1.03 ± 0.03	0.93 ± 0.06	0.96 ± 0.06	6.52 ± 21.86	0.92 ± 0.05	
Yacht	1.58 ± 0.08	1.73 ± 0.22	1.11 ± 0.18	0.61 ± 0.34	0.90 ± 0.08	
Year	3.69± NA	$3.42\pm$ NA	$3.44\pm$ NA	$3.43\pm$ NA	$3.34\pm$ NA	
# best	0	0	1	1	8	

Dataset	QICE ↓					
	PBP	MC Dropout	Deep Ensembles	GCDS	CARD (ours)	
Boston	3.50 ± 0.88	3.82 ± 0.82	3.37 ± 0.00	11.73 ± 1.05	3.45 ± 0.83	
Concrete	2.52 ± 0.60	4.17 ± 1.06	2.68 ± 0.64	10.49 ± 1.01	2.30 ± 0.66	
Energy	6.54 ± 0.90	5.22 ± 1.02	3.62 ± 0.58	7.41 ± 2.19	4.91 ± 0.94	
Kin8nm	1.31 ± 0.25	1.50 ± 0.32	1.17 ± 0.22	7.73 ± 0.80	0.92 ± 0.25	
Naval	4.06 ± 1.25	12.50 ± 1.95	6.64 ± 0.60	5.76 ± 2.25	0.80 ± 0.21	
Power	0.82 ± 0.19	1.32 ± 0.37	1.09 ± 0.26	1.77 ± 0.33	0.92 ± 0.21	
Protein	1.69 ± 0.09	2.82 ± 0.41	2.17 ± 0.16	2.33 ± 0.18	0.71 ± 0.11	
Wine	2.22 ± 0.64	2.79 ± 0.56	2.37 ± 0.63	3.13 ± 0.79	3.39 ± 0.69	
Yacht	6.93 ± 1.74	10.33 ± 1.34	7.22 ± 1.41	5.01 ± 1.02	8.03 ± 1.17	
Year	$2.96\pm$ NA	$2.43 \pm \mathrm{NA}$	$2.56 \pm \mathrm{NA}$	$1.61\pm$ NA	$0.53\pm$ NA	
# best	2	0	2	1	5	

QICE: the mean absolute error between the proportion of true data contained by each quantile interval of the generated y samples and the optimal proportion 1/M.

$$\text{QICE} \coloneqq \frac{1}{M} \sum_{m=1}^{M} \left| r_m - \frac{1}{M} \right|, \text{ where } r_m = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{y_n \geq \hat{g}_n^{\text{low}_m}} \cdot \mathbb{1}_{y_n \leq \hat{g}_n^{\text{high}_m}}.$$

Evaluation metric tables of UCI regression tasks. (**Top to Bottom**) RMSE, NLL, and QICE.

Classification

Algorithm 1 Training (Regression)

- 1: Pre-train $f_{\phi}(x)$ that predicts $\mathbb{E}(y \mid x)$ with MSE
- 2: repeat
- 3: Draw $y_0 \sim q(\boldsymbol{y}_0 \mid \boldsymbol{x})$
- 4: Draw $t \sim \text{Uniform}(\{1 \dots T\})$
- 5: Draw $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: Compute noise estimation loss

$$\mathcal{L}_{\boldsymbol{\epsilon}} = \left| \left| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\boldsymbol{x}, \sqrt{\bar{\alpha}_t} \boldsymbol{y}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} + \sqrt{1 - \bar{\alpha}_t} f_{\phi}(\boldsymbol{x}), f_{\phi}(\boldsymbol{x}), t \right| \right|^2$$

7: Take numerical optimization step on:

$$\nabla_{\theta} \mathcal{L}_{\epsilon}$$

8: until Convergence

Algorithm 2 Inference (Regression)

- 1: $\boldsymbol{y}_T \sim \mathcal{N}(f_{\phi}(\boldsymbol{x}), \boldsymbol{I})$
- 2: **for** t = T to 1 **do**
- 3: Draw $\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ if t > 1
- 4: Calculate reparameterized $\hat{y}_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(y_t (1 \sqrt{\bar{\alpha}_t}) f_{\phi}(x) \sqrt{1 \bar{\alpha}_t} \epsilon_{\theta}(x, y_t, f_{\phi}(x), t) \right)$
- 5: Let $m{y}_{t-1} = \gamma_0 \hat{m{y}}_0 + \gamma_1 m{y}_t + \gamma_2 f_\phi(m{x}) + \sqrt{\tilde{eta}_t} m{z}$ if t>1, else set $m{y}_{t-1} = \hat{m{y}}_0$
- 6: end for
- 7: **return** y_0

Adaptation for classification tasks:

- 1. For y_0 , replace the response variable with a one-hot encoded label vector;
- 2. For $f_{\phi}(x)$, replace the mean estimator with a classifier pre-trained with the cross-entropy objective, which outputs softmax probabilities of the class labels.

Classification

Assess model prediction confidence at the instance level

For each test instance, we sample N class prototype reconstructions by CARD, and perform the following computations:

- 1. We directly calculate the prediction interval width (PIW) between the 2.5^{th} and 97.5^{th} percentiles of the N reconstructed values for all classes, *i.e.*, with C different classes in total, we would obtain C PIWs for each instance;
- 2. We then convert the samples into probability space as a softmax form of a temperature-weighted Brier score, and apply paired two-sample t-test as an uncertainty estimation method: we obtain the 1^{st} and 2^{nd} most predicted classes for each instance, and test whether the difference in their mean predicted probability is statistically significant.

$$\Pr(y = k) = \frac{\exp(-(\boldsymbol{y}_0 - \mathbf{1}_C)_k^2/\tau)}{\sum_{i=1}^C \exp(-(\boldsymbol{y}_0 - \mathbf{1}_C)_i^2/\tau)}; \ \hat{y} = \arg\max_k \left(-(\boldsymbol{y}_0 - \mathbf{1}_C)_k^2\right).$$

Classification

Dataset	Accuracy	PIW		Acc. by PIW	Acc.	by t-test Result
		Correct	Incorrect		Rejected	Not-Rejected (Count)
FashionMNIST						
overall	91.79%	0.67	3.20	89.36%	92.07%	55.84% (77)
most acc.	98.50%	0.39	2.08			
least acc.	74.80%	1.37	3.26			
CIFAR-10						
overall	90.95%	2.37	21.52	87.84%	91.25%	42.86% (63)
most acc.	96.00%	0.55	29.27			
least acc.	81.90%	5.48	21.45			
CIFAR-100						
overall	71.42%	0.59	3.91	60.53%	71.56%	35.90% (39)
most acc.	95.00%	0.16	1.92			
least acc.	44.00%	5.09	5.84			
ImageNet-100						
overall	82.34%	2.06	13.73	68.64%	82.90%	34.48% (58)
most acc.	98.00%	0.72	8.06			
least acc.	42.00%	6.79	14.15			
ImageNe	t (f_{ϕ} Accura	cy 73.87%)			
overall	74.28%	0.65	3.11	69.22%	74.63%	24.93% (349)
most acc.	98.00%	0.27	2.80			
least acc.	8.00%	20.10	50.07			
ImageNe	t (f_{ϕ} Accura	cy 76.13%)			
overall	76.20%	0.51	3.60	75.21%	76.30%	25.71% (105)
most acc.	98.00%	0.08	2.66			
least acc.	18.00%	1.87	3.26			
ImageNe	t (f_{ϕ} Accura	cy 80.30%)			
overall	80.35%	1.42	5.13	74.08%	80.59%	27.63% (228)
most acc.	98.00%	0.49	2.34			
least acc.	8.00%	91.70	84.61			

PIW (multiplied by 100), accuracy by predicting with the narrowest PIW, and accuracy by t-test rejection status, for the FashionMNIST, CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet classification tasks, over a single experimental run. We only report the PIW for all test instances, and within the most and least accurate classes.

- Paper: https://arxiv.org/abs/2206.07275
- Code: https://github.com/XzwHan/CARD