Detecting Individual Decision-Making Style: Exploring Behavioral Stylometry in Chess

Reid McIlroy-Young University of Toronto

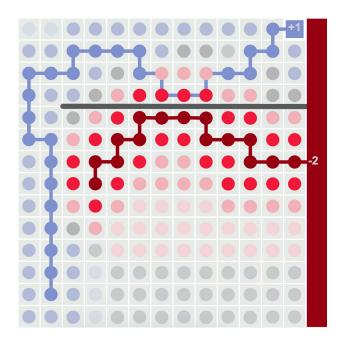
Russell Wang University of Toronto Now UC Berkeley

Siddhartha Sen Microsoft Research

Jon Kleinberg Cornell University

Ashton Anderson University of Toronto

Motivation



Source: Comunidad de Software Libre Hackem

Modern machine learning systems can surpass human decision making Human compatible machine learning systems are becoming more important

Motivation, cont

Existing work

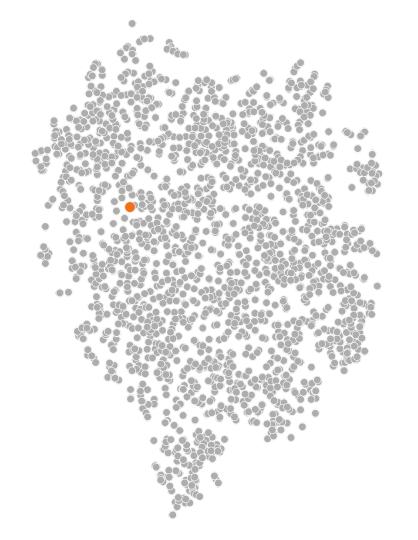
Characterize decisionmaking with an aggregate measure: skill, performance, age,

What we want

Al systems that understand humans as individuals: strengths, weaknesses, style, ...

Behavioral Stylometry

Task of identifying individuals simply from their decisions



Chess as a Model System

Superhuman Al

Large Datasets

Diverse players

- Since 2007
 - \cdot Open-source
 - Stockfish
 - · Leela Chess Zero

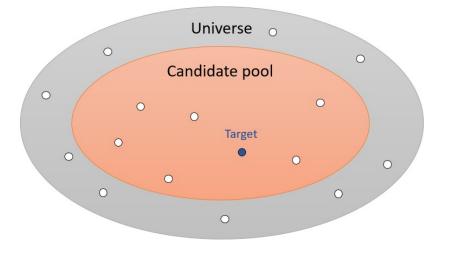
- Lichess open database
- · 2.6+ Billion chess games
- \cdot Many countries
- Accurate skill measure (Elo)
 Higher is stronger

Relatively Benign

- Games are public with limited PII
- Lower risk to players

Task Setup

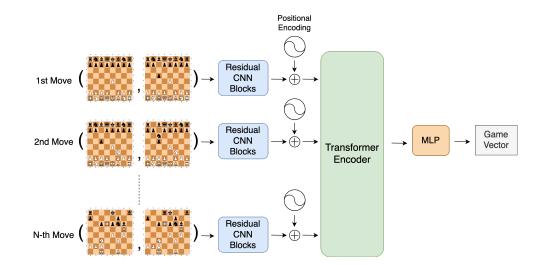
Identify a **specific** chess player from a finite of pool of candidates, using their moves during games



Given a set of moves from a *query* set (x_q) of games by an unknown **target player**, find the correct label for the player from a **candidate pool** of labelled players, from the universe of all players. Each labelled player has a *reference* set (x_r) of games.

Methods, Model Design

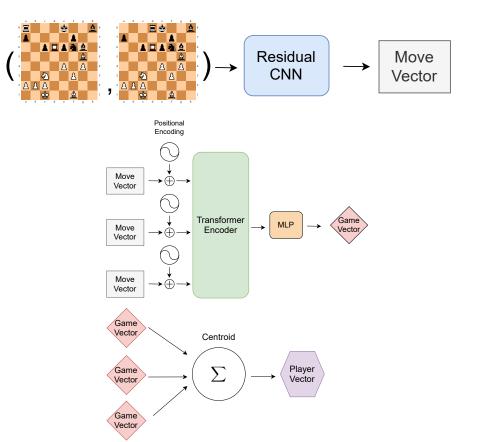
- \cdot Few shot learning approach
- Transformer takes in a chess game, outputs game embedding vector
- Training with Generalized Endto-End Loss (GE2E) loss²
 - · Designed for speaker verification in audio



² Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno. Generalized end-to-end loss for speaker verification. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4879–4883, 2018. URL: https://wangquan.me/files/research/GE2E_ICASSP_2018.pdf

Methods, Model Pipeline

- Moves are represented as images:
 - · (state before, state after)
- CNN resnet -> move vector
- Transformer takes all moves
 from game -> game vector (y)
- Centroid combines game vectors -> player vector (c)



Generalized End-to-End Loss (GE2E)

Minimize cosine distance between games by the **same player**

Maximize the distance between samples from other players

$$\mathbf{S}_{ji,k} = \begin{cases} w \cdot \cos(\mathbf{y}_{ji}, \mathbf{c}_j^{(-i)}) + b & \text{if } k = j; \\ w \cdot \cos(\mathbf{y}_{ji}, \mathbf{c}_k) + b & \text{otherwise.} \end{cases}$$

1. Builds a similarity matrix on a batch of $N \times M$ games

- \cdot *N* is number of players
- *M* is number of games per player
- 2. For each game by each player, calculate game vector x_{ji}

 \cdot *i*th game from the jth player

- 3. For each player compute the centroid of their games c_j
- 4. Then compute similarity matrix *S*_{*ji*,*k*}
 - $\cdot w$ and b are learned scaling parameters

Generalized End-to-End Loss (GE2E), Loss Calculation

Loss per sample is then calculated as:

$$L(\mathbf{y}_{ji}) = -\mathbf{S}_{ji,j} + \log \sum_{k=1}^{N} \exp(\mathbf{S}_{ji,k})$$

 \cdot *i*th game from the jth player

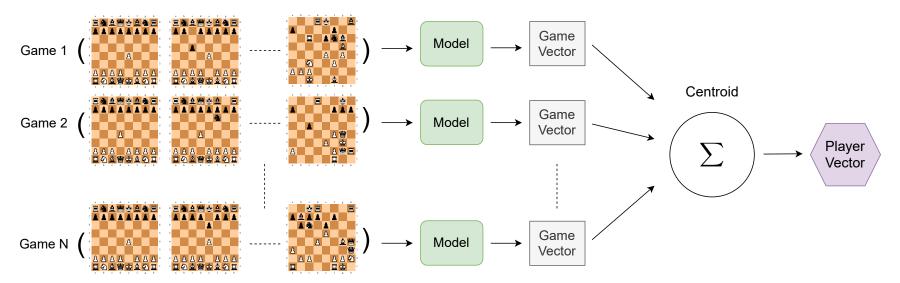
Total loss for the batch is:

$$L_{GE2E} = \sum_{j,i} L(\mathbf{y}_{ji})$$

SGD with momentum is used for optimizing

Inference

- Given query set (x_q) of a target player
- · Calculate game vectors
- · Compute centroid (player vector)
- · Find nearest labelled player in candidate pool



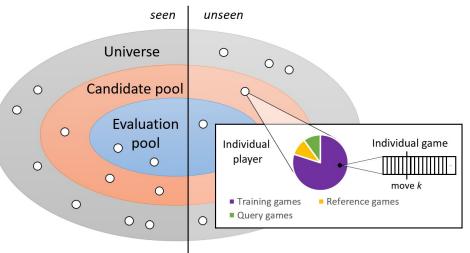
Data

- \cdot Chess games from *Lichess*³
- Players with ratings between
 1100 and 2000 Elo
- Blitz games (3-5 minute)
- · Players with over 1000 games

- Trained on seen set of players
 - · 63.7 million games
 - · 16,181 players in total
- **Unseen** set: players never seen during training
- All results shown are on
 games the models were
 not trained on

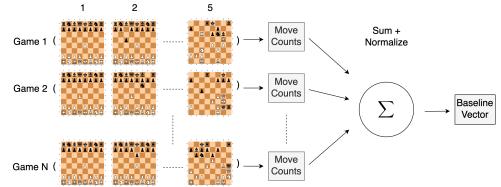
Experimental Setup

- Each target in the evaluation pool is considered separately
- **Target** players have query set (x_q) of 100 games
- Candidate players have *reference set* (*x_s*) of 100 games
- Focus on k=15
 - · 16th and onwards moves by player
 - · Mid/late game, as early is often formulaic



Baseline Model

- Sample 5 move sequence from a each game
 - · k=15: 16th to 20th moves
 - k=0: 1^{st} to 5^{th} moves
- one-hot 4096-dimensional encoding vector for each move
- · Sum game vectors, normalize
- Uses cosine distance like transformer model



Results, After Move 15 (k=15)

Test Description

- Candidate pool 2844 players
 - \cdot 2266 in **seen**, player in training
 - 578 in **unseen**, player not in training
- Only used decisions/moves after both players have made 15 actions

Accuracy (Top 1)

	Random	Baseline	Our Model
Unseen Only	0.04%	24.4%	86.0%
Unseen+ Seen	0.04%	26.8%	85.4%

Results, Whole Game (k=0)

Test Description

- Candidate pool 2844 players
 - · 2266 in **seen**, player in training
 - 578 in **unseen**, player not in training
- All moves in the game are used

Accuracy (Top 1)

	Random	Baseline	Our Model
Unseen Only	0.04%	92.9%	97.9%
Unseen+ Seen	0.04%	92.9%	98.2%

Results, Other Datasets, k=15

• McIlroy-Young et al.

- 400 players, candidate=evaluation pool
- Personalized model as comparison
 - · Requires 20k+ reference games

· High Ranked Players

- Lichess and chess.com leaderboards
- Candidate pool: high rank + mid rank
- Evaluation pool: high rank

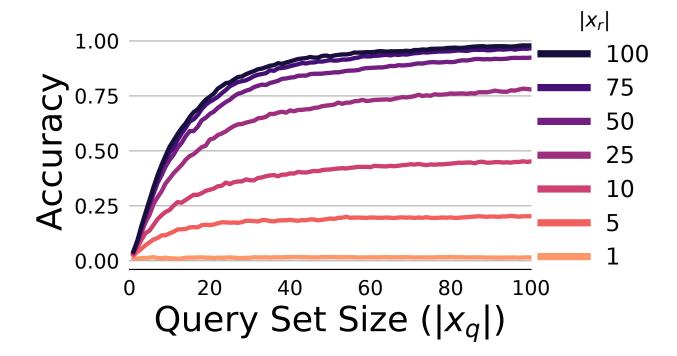
· Large Dataset

- · 41,184 players from Lichess
- Candidate=evaluation pool
- · Includes 16k seen players

Accuracy (Top 1)

	Baseline	Personalized	Our Model
McIlroy- Young et al.	47.8%	55.2%	95.3%
High Ranked Players	2.7%		30.1%
Large Dataset	8.49%		54.0%

Increasing x_r or x_q size has diminishing returns



Ethics

Privacy

- This can be used to identify players who wish to remain anonymous
- The embedding could also reveal other information, such as gender

Generalization

- These methods may be applicable to other domains
- This work is a first look at the implications of behavioral stylometry
- The research community should develop understanding before applying these techniques to a higher stakes domain

Conclusion

Behavioral Stylometry is a novel problem

• Design Al systems that can recognize people based on their decisions Few shot identification of chess players

 Transformer model that embeds players and games as vectors in a high dimensional space Ethical Considerations require further consideration

- Privacy for existing players
- Generalizations may cause significant concerns

Additional Information

- Code github.com/CSSLab/ behavioral-stylometry
- Email reidmcy@cs.toronto.edu

Twitter twitter.com/maiachess

Website maiachess.com

