

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

Zhuchen Shao^{*,1}, Hao Bian^{*,1}, Yang Chen^{*,1}, Yifeng Wang², Jian Zhang³, Xiangyang Ji⁴ Yongbing Zhang^{†,2}

¹Tsinghua Shenzhen International Graduate School, Tsinghua University
²Harbin Institute of Technology (Shenzhen)
³School of Electronic and Computer Engineering, Peking University
⁴Department of Automation, Tsinghua University

Whole Slide Image (WSI)

Fig. 1 Whole slide image

- Huge size (\sim 50000×50000 pixels at 20×)
- Lack of pixel-level annotations

Fig. 2 WSI storage

- Multiple resolution images
- Tissue to cell level information

Multiple Instance Learning (MIL)

Description of MIL problem

- MIL is a weak supervision problem
- Each bag contains an unequal number of instances
- Bag level label is known, instance label is unknown

Traditional assumption in MIL problem

- All the instances in each bag are independent and identically distributed (i.i.d.)

Correlated Multiple Instance Learning

- **Difference:** Consider the correlation and spatial information between different instances in a bag.

Fig. 3 Difference between MIL attention mechanism and self-attention mechanism

Fig.4 The difference between different Pooling Matrix

Method

Fig. 5 Overview of our TransMIL

- **Preprocessing** :
 - 1) Each WSI is cropped into a series of 256×256 non-overlapping patches, where background region (saturation <15) is discarded.
 - 2) The feature of each patch is embedded in a 1024-dimensional vector by a ResNet50 model pre-trained on ImageNet. 6

Fig. 5 Overview of our TransMIL

- Squaring of sequence:

- Square the length of the sequence, and add the class token, then reduce the dimension of each feature embedding from 1024 to 512.

Method

Fig. 5 Overview of our TransMIL

- 1) Correlation modelling of the sequence
- 2) Conditional position encoding and local information fusion
- 3) Deep feature aggregation

 $\mathbf{H}_{S}^{\ell} \leftarrow \mathsf{MSA}(\mathbf{H}_{S})$ $\mathbf{H}_{S}^{P} \leftarrow \mathsf{PPEG}(\mathbf{H}_{S}^{\ell})$ $\mathbf{H}_{S}^{\ell+1} \leftarrow \mathsf{MSA}(\mathbf{H}_{S}^{P})$

Position encoding with PPEG

- **Background** : Zero padding can provide an absolute position information to convolution^[1]

Fig.6 Pyramid Position Encoding Generator (PPEG)

[1] How much position information do convolutional neural networks encode? In International Conference on Learning Representations, 2020.

Fig. 5 Overview of our TransMIL

- Mapping of $\mathbb{T} \to \mathcal{Y}$
 - Use the class token to get the slide-level label of WSI
 - $\hat{Y} \leftarrow \text{MLP}(\text{LN}((\mathbf{H}_{S}^{\ell+1})^{(0)}))$

Experiments and Results

Table 1: Results on CAMELYON16, TCGA-NSCLC and TCGA-RCC.

	CAMELYON16		TCGA-NSCLC		TCGA-RCC	
	Accuracy	AUC	Accuracy	AUC	Accuracy	AUC
Mean-pooling	0.6389	0.4647	0.7282	0.8401	0.9054	0.9786
Max-pooling	0.8062	0.8569	0.8593	0.9463	0.9378	0.9879
ABMIL ^[1]	0.8682	0.8760	0.7719	0.8656	0.8934	0.9702
MIL-RNN ^[2]	0.8450	0.8880	0.8619	0.9107	\	\
DSMIL ^[3]	0.7985	0.8179	0.8058	0.8925	0.9294	0.9841
CLAM-SB ^[4]	0.8760	0.8809	0.8180	0.8818	0.8816	0.9723
CLAM-MB ^[4]	0.8372	0.8679	0.8422	0.9377	0.8966	0.9799
TransMIL	0.8837	0.9309	0.8835	0.9603	0.9466	0.9882

[1] Attention-based deep multiple instance learning. In International Conference on Machine Learning, 2018.

[2] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature medicine, 2019.

[3] Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021.

[4] Data-efficient and weakly supervised computational pathology on whole-slide images. Nature Biomedical Engineering, 2021.

THANK YOU