

Universal Off-Policy Evaluation

Yash Chandak

Scott Niekum

Bruno C. da Silva

Philip Thomas

Games (**Expected** performance)

Mean

You migh	nt also like

Games (**Expected** performance) Automated healthcare (Mitigate **risk**)

Mechanical control (Mitigate uncertainty) Online recommendation (Robust to **noisy** data-collection)

Mean

VaR, CVaR

Variance, Entropy

Median, Inter-quantiles

You migh	it also like

Games (**Expected** performance) Automated healthcare (Mitigate **risk**) Mechanical control (Mitigate uncertainty) Online recommendation (Robust to **noisy** data-collection)

Mean

Markovian

VaR, CVaR

Partial Observation

Variance, Entropy

Non-Markovian

Median, Inter-quantiles

Non-stationary

Real-world problems are often high-stakes. Evaluate a policy's performance *before* deployment (**off-policy**).

You might also like	

Games (**Expected** performance) Automated healthcare (Mitigate **risk**)

Mechanical control (Mitigate uncertainty) Online recommendation (Robust to **noisy** data-collection)

Mean

Markovian

VaR, CVaR

Partial Observation

Variance, Entropy

Non-Markovian

Median, Inter-quantiles

Non-stationary

Given: Trajectories collected using one or multiple *past* (behavior) policies.

Goal

Given: Trajectories collected using one or multiple *past* (behavior) policies.

Aim: Evaluate and bound the desired performance metric (mean, variance, CVaR, etc.) of the return distribution under a *new* policy, using the given trajectories.

Goal

Assumptions

- Any outcome under the evaluation policy is possible under the behavior policy (support assumption)
- Knowledge of action probabilities under the behavior policy

Prior work

- Model-based
 - Additional requirement for estimating reward distribution for each state-action pair
 - Hard to estimate accurate models in **non-tabular** settings
- Typical IS based estimators
 - Only corrects for the mean
- Distributional RL
 - On-policy

A Universal Evaluation Procedure

- Off-policy
 - Model-free
- Different **performance metrics** (Estimation + High-confidence bounds)
 - Mean,
 - VaR, CVaR,
 - Variance, Entropy,
 - Median, Inter-quantiles
 - **Etc**.
- Different domain settings
 - Markovian, Non-Markovian
 - Fully observable, Partially-observable
 - Smoothly non-stationary, discrete distribution shifts

Core Idea

- If we have an **estimator for the CDF** then we can obtain an estimator for any of its parameters

$$F_{\pi}(\nu) \coloneqq \Pr\left(G_{\pi} \leq \nu\right), \qquad \forall \nu \in \mathbb{R}$$

- Bounds for the CDF can directly be used to obtain bounds on its parameters

$$\Pr(orall
u \in \mathbb{R}, F_\pi(
u) \in \mathcal{F}(
u)) \geq 1-\delta$$

Intuition for CDF Estimator

Intuition for CDF Estimator

Intuition for CDF Estimator

CDF Estimator

Theorem 1. Under Assumption 1, \hat{F}_n is an unbiased and uniformly consistent estimator of F_{π} . That is,

$$\forall \nu \in \mathbb{R}, \quad \mathbb{E}_{\mathcal{D}} \Big[\hat{F}_n(\nu) \Big] = F_{\pi}(\nu),$$
$$\sup_{\nu \in \mathbb{R}} \left| \hat{F}_n(\nu) - F_{\pi}(\nu) \right| \xrightarrow{a.s.} 0.$$

Estimates for Different Parameters

$$\hat{F}_n^{-1}(\alpha) \coloneqq \min \Big\{ g \in (G_{(i)})_{i=1}^n \Big| \hat{F}_n(g) \ge \alpha \Big\},$$

CDF Inverse

$$d\hat{F}_n(G_{(i)}) \coloneqq \hat{F}_n(G_{(i)}) - \hat{F}_n(G_{(i-1)}),$$

$$\mathsf{PDF}$$

Estimates for Different Parameters

$$\hat{F}_n^{-1}(\alpha) \coloneqq \min\left\{g \in (G_{(i)})_{i=1}^n \middle| \hat{F}_n(g) \ge \alpha\right\}, \qquad \mathrm{d}\hat{F}_n(G_{(i)}) \coloneqq \hat{F}_n(G_{(i)}) - \hat{F}_n(G_{(i-1)}),$$
CDF Inverse PDF

$$\begin{split} \mu_{\pi}(\hat{F}_{n}) &\coloneqq \sum_{i=1}^{n} \mathrm{d}\hat{F}_{n}(G_{(i)})G_{(i)}, & Q_{\pi}^{\alpha}(\hat{F}_{n}) \coloneqq \hat{F}_{n}^{-1}(\alpha), \\ \mathrm{IQR}_{\pi}^{\alpha_{1},\alpha_{2}}(\hat{F}_{n}) &\coloneqq Q_{\pi}^{\alpha_{2}}(\hat{F}_{n}) - Q_{\pi}^{\alpha_{1}}(\hat{F}_{n}), \\ \sigma_{\pi}^{2}(\hat{F}_{n}) &\coloneqq \sum_{i=1}^{n} \mathrm{d}\hat{F}_{n}(G_{(i)}) \left(G_{(i)} - \mu_{\pi}(\hat{F}_{n})\right)^{2}, & \mathrm{IQR}_{\pi}^{\alpha_{1},\alpha_{2}}(\hat{F}_{n}) \coloneqq Q_{\pi}^{\alpha_{2}}(\hat{F}_{n}) - Q_{\pi}^{\alpha_{1}}(\hat{F}_{n}), \\ \mathcal{H}_{\pi}(\hat{F}_{n}) &\coloneqq -\sum_{i=1}^{n} \mathrm{d}\hat{F}_{n}(G_{(i)}) \log \mathrm{d}\hat{F}_{n}(G_{(i)}). & \mathrm{CVaR}_{\pi}^{\alpha}(\hat{F}_{n}) \coloneqq \frac{1}{\alpha} \sum_{i=1}^{n} \mathrm{d}\hat{F}_{n}(G_{(i)})G_{(i)}\mathbb{1}_{\{G_{(i)} \leq Q_{\pi}^{\alpha}(\hat{F}_{n})\}}. \end{split}$$

Estimates for Different Parameters

$$\hat{F}_n^{-1}(\alpha) \coloneqq \min \Big\{ g \in (G_{(i)})_{i=1}^n \Big| \hat{F}_n(g) \ge \alpha \Big\}, \qquad \mathrm{d}\hat{F}_n(G_{(i)}) \coloneqq \hat{F}_n(G_{(i)}) - \hat{F}_n(G_{(i-1)}),$$

Mean estimate *exactly* equal to the common (trajectory-based) IS estimate.

$$\begin{split} \mu_{\pi}(\hat{F}_{n}) &\coloneqq \sum_{i=1}^{n} \mathrm{d}\hat{F}_{n}(G_{(i)})G_{(i)}, & Q_{\pi}^{\alpha}(\hat{F}_{n}) \coloneqq \hat{F}_{n}^{-1}(\alpha), \\ \mathrm{IQR}_{\pi}^{\alpha_{1},\alpha_{2}}(\hat{F}_{n}) &\coloneqq Q_{\pi}^{\alpha_{2}}(\hat{F}_{n}) - Q_{\pi}^{\alpha_{1}}(\hat{F}_{n}), \\ \sigma_{\pi}^{2}(\hat{F}_{n}) &\coloneqq \sum_{i=1}^{n} \mathrm{d}\hat{F}_{n}(G_{(i)}) \Big(G_{(i)} - \mu_{\pi}(\hat{F}_{n})\Big)^{2}, & \mathrm{CVaR}_{\pi}^{\alpha}(\hat{F}_{n}) \coloneqq \frac{1}{\alpha} \sum_{i=1}^{n} \mathrm{d}\hat{F}_{n}(G_{(i)})G_{(i)}\mathbb{1}_{\{G_{(i)} \leq Q_{\pi}^{\alpha}(\hat{F}_{n})\}} \\ \mathcal{H}_{\pi}(\hat{F}_{n}) &\coloneqq -\sum_{i=1}^{n} \mathrm{d}\hat{F}_{n}(G_{(i)}) \log \mathrm{d}\hat{F}_{n}(G_{(i)}). \end{split}$$

Bounds for Different Parameters

- Mean
- Quantile
- CVaR
- Inter-quantile
- Entropy
- Variance
-

Bounds for Different Parameters

- Mean
- Quantile
- CVaR
- Inter-quantile
- Entropy
- Variance

-

- Estimates for different parameters might be **biased**
- Importance sampling results in high variance
- Need to obtain high-confidence bounds with guaranteed coverage for reliability.

Bounds

Bounds

$${\hat F}_n(\kappa):=rac{1}{n}\sum_{i=1}^n
ho_i(1_{\{G_i\leq\kappa\}})$$
 ,

Mean Estimation!

Let
$$X \coloneqq \rho(1_{\{G \le \kappa\}})$$
.
 $\mathbb{E}_{\mathcal{D}}[X] = F_{\pi}(\kappa)$.

Bounds

Theorem 3. Under Assumption 1, for any $\delta \in (0, 1]$, if $\sum_{i=1}^{K} \delta_i \leq \delta$, then the confidence band defined by F_- and F_+ provides guaranteed coverage for F_{π} . That is, $\Pr\left(\forall \nu, F_-(\nu) \leq F_{\pi}(\nu) \leq F_+(\nu)\right) \geq 1 - \delta.$

Bootstrap

Algorithm 1: Bootstrap Bounds for $\psi(F_{\pi})$

- 1 Input: Dataset \mathcal{D} , Confidence level 1δ
- ² Bootstrap *B* datasets $\{\mathcal{D}_i^*\}_{i=1}^B$ and create $\{\bar{F}_{n,i}^*\}_{i=1}^B$
- 3 Bootstrap estimates $\{\psi(\bar{F}_{n,i}^*)\}_{i=1}^B$ using $\{\bar{F}_{n,i}^*\}_{i=1}^B$.
- 4 Compute $\{\psi_{-}, \psi_{+}\}$ using BCa $(\{\psi(\bar{F}_{n,i}^{*})\}_{i=1}^{B}, \delta)$ [1]
- 5 Return $\{\psi_-,\psi_+\}$
 - Approximate
 - Significantly Tighter

[1] DiCiccio, Thomas J., and Bradley Efron. "Bootstrap confidence intervals." Statistical science 11.3 (1996)

30k samples 30 Trials

[1] Thomas, Philip, Georgios Theocharous, and Mohammad Ghavamzadeh. "High-confidence off-policy evaluation." AAAI 2015.

[2] Chandak, Yash, Shiv Shankar, and Philip S. Thomas. "High-Confidence Off-Policy (or Counterfactual) Variance Estimation." AAAI 2021.

Extensions

- Weighted IS based UnO for variance reduction*
- UnO for partially observable MDPs*
- UnO for discrete distributional shifts*
- UnO for smooth non-stationarities*
- Parallel work at NeurIPS'21 by Audrey et al. [1] provides uniform convergence rates for off-policy CDF and Lipschitz risk functionals.

*see our paper for more details.

[1] Huang, Audrey, Liu Leqi, Zachary C. Lipton, and Kamyar Azizzadenesheli. "Off-Policy Risk Assessment in Contextual Bandits." NeurIPS 2021.

