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High cardinality categorical features
▪ Using EMR of hospital patients to predict hospital readmission, the 
feature disease could take 1 out of thousands of values (Lin et. al., 2019)

▪ Using the CelebA facial images dataset to develop a computer 
vision model to localize facial features, several images from the same 
person (a.k.a repeated measures), over 10K identities (Liu et. al., 2015)

▪ Predicting the price of a Airbnb rental, ~40K hosts in NYC alone 
(Kalehbasti et al., 2019)
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Current solutions
▪ One-hot encoding (OHE) → 𝑞 levels to 𝑞 additional binary features

▪ Entity embeddings → reduce dimensionality from 𝑞 to 𝑑 with a 
learned 𝐷𝑞×𝑑 dictionary

▪ Ignore!

▪ Other (Hancock and Khoshgoftaar, 2020):
▪Clustering (expert knowledge, “other” strategy, clustering algos)

▪ Feature Hashing

▪ Supervised numerical encoding
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TL;DR
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Linear Mixed Models (LMM) (I)

𝑦 = 𝑋𝛽 + 𝑍𝑏 + 𝜀
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𝑦 ∈ 𝑅𝑛 𝑛 × 𝑝
“fixed” 

features matrix

𝛽 ∈ 𝑅𝑝

“fixed” 
effects

𝑛 × 𝑞
“random” 

features matrix

𝑏 ∈ 𝑅𝑞

“random” 
effects (RE)
∼ 𝑁(0, 𝐷𝑞×𝑞)

𝜀 ∈ 𝑅𝑛

∼ 𝑁(0, 𝜎𝑒
2𝐼𝑛)

Random Intercepts model:
• single categorical (RE) feature of 𝑞 levels

• 𝐷 = 𝜎𝑏
2𝐼𝑞

• 𝑍 is a binary matrix
• s.t. 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗,1 +⋯+ 𝛽1𝑥𝑖𝑗,𝑝−1 + 𝑏𝑗 + 𝜀𝑖𝑗 , 𝑖 = 1, … , 𝑛𝑖 , 𝑗 = 1, … , 𝑞



Linear Mixed Models (LMM) (II)
▪ Marginal distribution of 𝑦: 

𝑦 ∼ 𝑁(𝑋𝛽, 𝑉 𝜓 )

where 𝜓 are variance components to estimate and 𝑉 𝜓 = 𝑍𝐷𝑍′ + 𝜎𝑒
2𝐼𝑛

▪ Log-likelihood of 𝛽, 𝜓:

𝑙 𝛽, 𝜓 = −
1

2
𝑦 − 𝑋𝛽 ′𝑉 𝜓 −1 𝑦 − 𝑋𝛽 −

1

2
log 𝑉 𝜓 −

𝑛

2
log 2𝜋

▪ Get መ𝛽, 𝜓 via MLE/REML

▪ Predict (BLUP) 𝑏 = 𝐷𝑍′𝑉 𝜓
−1
(𝑦 − 𝑋 መ𝛽) (avoid inversion for random intercepts…)

▪ Predict ො𝑦𝑡𝑒 = 𝑋𝑡𝑒 መ𝛽 + Z𝑡𝑒 𝑏 or ො𝑦𝑡𝑒 = 𝑋𝑡𝑒 መ𝛽 for unknown levels

GIORA SIMCHONI. SAHARON ROSSET, NEURIPS 2021 7



Random effects: what for
By treating high-cardinality categorical features as RE in DNN, we 
hope to:

▪ Model the correlation between clustered observations better (faces of 
the same person!)

▪ Scale to higher 𝑞 (only 2 additional params to estimate for random intercepts, many 
DNN ignore such features altogether)

▪ Ultimately leading to better prediction performance (e.g. MSE)

▪ Bonus: scale non-linear MM as well!
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Our approach (LMMNN*) (I)

𝑦 = 𝑓(𝑋) + 𝑔(𝑍)𝑏 + 𝜀
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“fixed” part: 
output of (any) 
regression DNN

“random” part: 
output of NN / 
embeddings, 
many times 
𝑔 𝑍 = 𝑍

𝑏 ∈ 𝑅𝑑

“random” 
effects (RE)
∼ 𝑁(0, 𝐷𝑑×𝑑)

𝜀 ∈ 𝑅𝑛

∼ 𝑁(0, 𝜎𝑒
2𝐼𝑛)

*In this work we focus on the random intercepts model for high-cardinality categorical features in 
a regression setting first, see extensions later.

𝑦 = 𝑋𝛽 + 𝑍𝑏 + 𝜀



Our approach (LMMNN) (II)
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Our approach (LMMNN) (III)
▪ Marginal distribution of 𝑦: 

𝑦 ∼ 𝑁(𝑓(𝑋), 𝑉 𝑔, 𝜓 )
where 𝜓 are variance components to estimate and 𝑉 𝑔,𝜓 = 𝑔(𝑍)𝐷𝑔(𝑍)′ + 𝜎𝑒

2𝐼𝑛

▪ Negative log-likelihood (NLL) of 𝑓, 𝑔, 𝜓 is a natural loss function at each gradient 
descent iteration on mini-batch 𝜉 of size 𝑚:

NLL𝜉 𝑓, 𝑔, 𝜓 =
1

2
𝑦𝜉 − 𝑓(𝑋𝜉)

′
𝑉 𝑔,𝜓 𝜉

−1 𝑦𝜉 − 𝑓(𝑋𝜉) +
1

2
log 𝑉 𝑔, 𝜓 𝜉 +

𝑚

2
log 2𝜋

▪ Get መ𝑓, ො𝑔, 𝜓 via DNN optimization (mini-batch SGD, auto-differentiation)

▪ Predict (BLUP) 𝑏 = 𝐷𝑍′𝑉 ො𝑔, 𝜓
−1
(𝑦 − መ𝑓(𝑋)) (avoid inversion for random intercepts…)

▪ Predict ො𝑦𝑡𝑒 = መ𝑓(𝑋𝑡𝑒) + ො𝑔(Z𝑡𝑒)𝑏 or ො𝑦𝑡𝑒 = መ𝑓(𝑋𝑡𝑒)for unknown levels
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Other approaches
▪ MeNets (Xiong et. al., 2019)

▪ DeepGLMM (Tran et. al., 2020)
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𝑦 = 𝑓 𝑋 𝛽 + 𝑓 𝑍 𝑏 + 𝜀

𝑔(𝜇𝑖𝑡) = 𝑓 𝑥𝑖𝑡
1
, 𝜔, 𝛽 1 + (𝛽 2 + 𝛼𝑖)′𝑥𝑖𝑡

2



Results: Simulated data (I)
▪ 𝑦 = 𝑋1 +⋯+ 𝑋10 ⋅ cos(𝑋1+⋯+ 𝑋10) + 2 ⋅ 𝑋1 ⋅ 𝑋2 + 𝑔 𝑍 𝑏 + 𝜀

▪ 𝑋𝑙 ∼ 𝑈 −1, 1 ; 𝑙 = 1,… , 10

▪𝜎𝑒
2 = 1

▪ 𝑞 ∈ 100, 1,000, 10,000 ; 𝜎𝑏
2 ∈ {0.1, 1.0, 10.0}

▪ 𝑛 = 100,000, 80/20% train/test split

▪ 5 repetitions

▪ Base DNN: 4-layers MLP with [100, 50, 25, 12, 1] neurons, 25% 
Dropout, ReLU activation
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Results: Simulated data (II)
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Results: Simulated data (III)

GIORA SIMCHONI. SAHARON ROSSET, NEURIPS 2021 15



Results: Simulated data (IV)

GIORA SIMCHONI. SAHARON ROSSET, NEURIPS 2021 16



Results: Simulated data (V)
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Results: Real data
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Convergence
▪ Main challenge in decomposing the full NLL gradient: 𝑉 𝑔,𝜓 −1and log |𝑉(𝑔, 𝜓)| where 𝑉 is 
𝑛 × 𝑛 and only a 𝑚 ×𝑚 “part” of it is used in each mini-batch of size 𝑚

▪ For the simple random intercepts model with 𝑔 𝑍 = 𝑍 we show in the paper how the full 
gradient can be written exactly as the sum of 𝑞 sub-gradients where each batch consists of 𝑛𝑗
level 𝑗 observations:

𝜕𝑁𝐿𝐿

𝜕𝜓
= 

𝑗=1

𝑞

−
1

2
𝑦𝑗 − 𝑓(𝑋𝑗)

′
𝑉𝑗
−1

𝜕𝑉𝑗

𝜕𝜓
𝑉𝑗
−1 𝑦𝑗 − 𝑓(𝑋𝑗) +

1

2
𝑡𝑟 𝑉𝑗

−1
𝜕𝑉𝑗

𝜕𝜓

▪ This:
▪ may not be realistic for some datasets as 𝑛𝑗 could be large for some 𝑗

▪ is not the case in general when 𝑔 𝑍 ≠ 𝑍

▪ for other LMM scenarios, needs a block-diagonal 𝑉 𝑔, 𝜓 (see Extensions)

▪ For a more general structure of 𝑉(𝑔, 𝜓) see e.g. Chen et. al. 2020, but this is still WIP
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Extensions
▪ A single high-cardinality categorical 
feature is just the start

▪ Many useful correlation structures 𝐷
have already shown promising results 
(future work):
▪ Multiple categorical features (see 

simulations)

▪ Longitudinal data

▪ Kriging over random fields, similar to GP

▪ GLMM (e.g. classification setting)
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Code
▪ Python 3.8, Tensorflow-Keras
(Chollet, 2015)

▪ lmmnn package, key feature: 
NLL custom Keras loss layer

▪All code in: 
https://github.com/gsimchoni/lmmnn
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Thank you.
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