The Alan Turing Institute

Solving Graph-based Public Good Games with Tree Search and Imitation Learning

Victor-Alexandru Darvariu^{1,2}, Stephen Hailes¹, and Mirco Musolesi^{1,2,3} ¹University College London ²The Alan Turing Institute ³University of Bologna {v.darvariu, s.hailes, m.musolesi}@cs.ucl.ac.uk

Outline

- 1. The Networked Best-Shot Public Goods Game
- 2. Our Approach for Finding Equilibria
- 3. Results & Discussion

The Networked Best-Shot Public Goods Game

Public goods games (PGG)

- Form of n-party social dilemma
- Means of studying tensions between decisions that benefit only the individual vs. wider society
- Example applications:
 - Provisioning of public infrastructure & services
 - Dynamics of research & innovation
 - Meeting climate change targets

Networked, best-shot PGGs

- *Networked*: impact of contributions limited along connections of a network
- *Best-shot*: utilities are binary and utility saturated if player or neighbour owns good

Formally...

- Undirected, unweighted graph G = (N, E)
- Vertices $N = \{N_1, N_2, \dots N_n\}$ represent players
- Neighbourhood $\mathcal{N}_i = \{i\} \cup \{N_j \in N | (i, j) \in E\}$
- Action profile $\mathbf{a} = (a_1, \ldots, a_n)$
- Acquiring good costs $c_i \in (0, 1)$, may differ between players

Utilities and equilibria

- Utilities defined as:

$$u_i(\mathbf{a}) = \begin{cases} 1 - c_i, \text{ if } a_i = 1\\ 1, \text{ if } a_i = 0 \land \exists j \in \mathcal{N}_i . a_j = 1\\ 0, \text{ if } a_i = 0 \land \forall j \in \mathcal{N}_i . a_j = 0 \end{cases}$$

- Pure Strategy Nash Equilibria (PSNE):

$$u_i(a_i, \mathbf{a}_{-i}) \ge u_i(a'_i, \mathbf{a}_{-i}) \ \forall i \in N, \ a'_i \in A_i$$

Finding equilibria

- "What is an ideal outcome in this game?"
- Equilibria correspond to Maximal Independent Sets (mIS) of graphs (Bramoullé & Kranton, 2007)
 - independent set is s.t. none of the vertices adjacent to each other
 - maximal independent set: IS not a proper subset of any other IS
- Finding an equilibrium (Jackson & Zenou, 2015)
 - Start with empty IS; incrementally add neighbours until IS is mIS
- Problem is NP-complete in general

Finding equilibria

Problem statement

- Given the set \mathcal{E} of all PSNE and an objective function $f: \mathcal{E} \to [0, 1]$
- Find PSNE profiles which satisfy $\operatorname{argmax}_{\mathbf{a}\in\mathcal{E}} f(\mathbf{a})$
- Example objectives: *social welfare* and *fairness*

$$SW(\mathbf{a}) = \frac{\sum_{i \in N} u_i(\mathbf{a})}{|N|} \qquad F(\mathbf{a}) = 1 - \frac{\sum_{i \in N} \sum_{j \in N} |u_i(\mathbf{a}) - u_j(\mathbf{a})|}{2n \sum_{j \in N} u_j(\mathbf{a})}$$

Prior approaches

- Dall'Asta et al., 2011
 - Perturb configuration, play out the game to equilibrium
 - Accept new equilibrium according to simulated annealing rule
 - Ergodic Markov Chain, reaches optimal equilibrium in the limit
 - Approximate solution computationally feasible
- Levit al., 2018
 - Show general version of networked PGG is a potential game
 - Extend definition of utilities to include a payoff term
 - Players unhappy with outcome may convince neighbours to switch by offering a payoff (e.g., money)

Our Approach for Finding Equilibria

Our approach

- 1. Exploit connection with mIS property and formulate constructing an mIS as an MDP
- 2. Use Monte Carlo Tree Search to find optimal mIS using model of MDP
- 3. Collect a dataset of MCTS trajectories
- 4. Use dataset to train a GNN-parametrized policy by imitation learning

1. Formulating mIS construction as an MDP

agent that acquires public good
neighbor able to access it cost-free

1. Formulating mIS construction as an MDP

- State: tuple (G, I_t) formed of graph and IS
- Action: $\mathcal{A}_t = N \setminus \bigcup_{i \in I_t} \mathcal{N}_i$
- Transitions: deterministic; $I_t = I_{t-1} \cup \{a\}$
- **Rewards**: $f(\mathbf{a})$ at terminal states, 0 otherwise

2. MCTS to search for optimal equilibria

3. Building a dataset of MCTS demonstrations

4. Imitation learning a GNN policy

4. Imitation learning a GNN policy

- Policy $\hat{\pi}$ parametrized by GNN (Dai et al. 2016)
- Outputs a proto-action $\phi(S_t)$
- Probabilities proportional to distance between proto-action and all available actions:

$$\hat{\pi}(A_t|S_t) = \frac{\exp(d(\mu_{A_t}, \phi(S_t))/\tau)}{\sum_{a \in \mathcal{A}(S_t)} \exp(d(\mu_a, \phi(S_t))/\tau)}$$

• Trained with KL loss: $\mathcal{L} = -\sum_{a \in \mathcal{A}(s)} \frac{C(s,a)}{C(s)} \log(\hat{\pi}(a|s))$

Results & Discussion

Experimental setup

- Consider games with $n \in \{15, 25, 50, 75, 100\}$ players
- Take place over synthetic Barabási-Albert, Erdős-Rényi, Watts-Strogatz graphs
- Identical / heterogenous costs to acquire good (IC / HC)
- Constructing IL dataset: *separate, mixed, curriculum*
 - separate: only trajectories from same n
 - *mixed*: trajectories from all game sizes
 - curriculum: train in ascending order of n

Experimental setup

- Baselines:
 - **SA**: simulated annealing (Dall'Asta et al., 2011)
 - PT: payoff transfer (Levit et al., 2018)
 - Random: pick a mIS at random
 - TH: target hubs by placing public good on central nodes
 - **TLC**: place good on *lowest-cost* nodes in the network
 - **BR**: start from a random outcome, iteratively play *best response* until equilibrium reached
 - **ES**: *exhaustive search* over all action profiles (only applicable on very small graphs)

Results

			Random	TH	TLC	BR	PT	SA	UCT	GIL (ours)
С	\mathbf{G}	f								
HC	BA	F	$0.745{\scriptstyle \pm 0.005}$	0.802	0.774	$0.742{\scriptstyle \pm 0.004}$	$0.791{\scriptstyle \pm 0.015}$	$0.815{\scriptstyle \pm 0.000}$	0.837 ±0.000	$0.834{\scriptstyle\pm0.001}$
		SW	$0.697{\scriptstyle\pm0.007}$	0.779	0.727	$0.691{\scriptstyle \pm 0.006}$	$0.760{\scriptstyle \pm 0.019}$	$0.795{\scriptstyle \pm 0.000}$	0.815 ±0.000	$0.813{\scriptstyle \pm 0.000}$
	ER	F	$0.877{\scriptstyle\pm0.001}$	0.896	0.920	$0.877{\scriptstyle\pm0.000}$	$0.911{\scriptstyle \pm 0.002}$	$0.908{\scriptstyle\pm0.001}$	0.945 ±0.000	$0.940{\scriptstyle\pm0.003}$
		SW	$0.868{\scriptstyle \pm 0.001}$	0.890	0.912	$0.867{\scriptstyle\pm0.000}$	$0.903{\scriptstyle\pm0.002}$	$0.903{\scriptstyle\pm0.001}$	0.940 ±0.000	$0.935{\scriptstyle\pm0.001}$
	WS	\mathbf{F}	$0.803{\scriptstyle\pm0.002}$	0.806	0.865	$0.804{\scriptstyle\pm0.002}$	$0.821 {\pm} 0.003$	$0.832{\scriptstyle\pm0.001}$	0.892 ±0.000	0.892 ±0.000
		SW	$0.781{\scriptstyle \pm 0.002}$	0.785	0.846	$0.782{\scriptstyle\pm0.003}$	$0.800{\scriptstyle \pm 0.004}$	$0.817{\scriptstyle\pm0.001}$	0.876 ±0.000	0.876 ±0.000
IC	BA	F	$0.833{\scriptstyle \pm 0.000}$	0.844	_	$0.834{\scriptstyle\pm0.000}$	$0.841 {\pm} 0.005$	0.849 ±0.000	$0.847{\scriptstyle\pm0.000}$	$0.847{\scriptstyle\pm0.000}$
		SW	$0.697{\scriptstyle\pm0.007}$	0.779	_	$0.691{\scriptstyle \pm 0.006}$	$0.757{\scriptstyle \pm 0.019}$	$0.794{\scriptstyle \pm 0.000}$	0.795 ±0.000	0.795 ±0.000
	ER	F	$0.893{\scriptstyle \pm 0.000}$	0.906	_	$0.892{\scriptstyle\pm0.000}$	$0.907{\scriptstyle\pm0.001}$	$0.916{\scriptstyle \pm 0.000}$	0.922 ±0.000	$0.919{\scriptstyle \pm 0.002}$
		SW	$0.867{\scriptstyle\pm0.000}$	0.889	_	$0.866{\scriptstyle \pm 0.001}$	$0.889{\scriptstyle \pm 0.002}$	$0.903{\scriptstyle\pm0.000}$	0.910 ±0.000	$0.908{\scriptstyle\pm0.001}$
	WS	F	$0.842{\scriptstyle\pm0.001}$	0.843		$0.842{\scriptstyle\pm0.001}$	$0.847{\scriptstyle\pm0.001}$	$0.856{\scriptstyle \pm 0.000}$	$0.862{\scriptstyle\pm0.000}$	0.864 ±0.000
		SW	$0.777{\scriptstyle\pm0.002}$	0.782		$0.779{\scriptstyle \pm 0.003}$	$0.791{\scriptstyle \pm 0.004}$	$0.813{\scriptstyle \pm 0.001}$	$0.824{\scriptstyle\pm0.000}$	$\textbf{0.828}{\scriptstyle \pm 0.000}$

Summary of results

- Finds equilibria of higher social welfare and fairness than previous methods
 - Difference more substantial when costs differ between players
- IL policy preserves performance while 3 orders of magnitude cheaper to evaluate
- Best method for dataset construction depends on underlying network structure
 - BA: mixed; ER: curriculum; WS: no significant difference

Outlook

- Related to ongoing efforts to study cooperation in multiagent systems (Dafoe et al., 2020)
- While we consider a game theory application, method applies to maximal independent sets in general
 - see, e.g., Dall'Asta et al., 2009
- IL proto-action method of interest for graph combinatorial optimization and algorithmic reasoning
 - see, e.g., Cappart et al., 2021

References

Bramoullé, Y., & Kranton, R. (2007). Public goods in networks. *Journal of Economic Theory*, 135(1), 478–494.

Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., & Veličković, P. (2021). Combinatorial optimization and reasoning with graph neural networks. In: *IJCAI*.

Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K. R., Leibo, J. Z., Larson, K., & Graepel, T. (2020). Open Problems in Cooperative AI. *arXiv:2012.08630.*

Dai, Hanjun, Bo Dai, and Le Song (2016). "Discriminative Embeddings of Latent Variable Models for Structured Data". In: *ICML*.

Dall'Asta, L., Pin, P., & Ramezanpour, A. (2009). Statistical Mechanics of maximal independent sets. *Physical Review E*, *80*(6), 061136.

Dall'Asta, L., Pin, P., & Ramezanpour, A. (2011). Optimal Equilibria of the Best Shot Game. *Journal of Public Economic Theory*, *13*(6), 885–901.

Levit, V., Komarovsky, Z., Grinshpoun, T., & Meisels, A. (2018). Incentive-based search for efficient equilibria of the public goods game. *Artificial Intelligence*, 262, 142–162.

Jackson, M. O., & Zenou, Y. (2015). Chapter 3—Games on Networks. In H. P. Young & S. Zamir (Eds.), *Handbook of Game Theory with Economic Applications* (Vol. 4, pp. 95–163). Elsevier.

Solving Graph-based Public Good Games with Tree Search and Imitation Learning Victor-Alexandru Darvariu, Stephen Hailes, Mirco Musolesi https://arxiv.org/abs/2106.06762

v.darvariu@cs.ucl.ac.uk
@VictorDarvariu
https://victor.darvariu.me