35th Conference on Neural Information Processing Systems (NeurIPS 2021)

Ising Model Selection Using ℓ_1 -Regularized Linear Regression: A Statistical Mechanics Analysis

Xiangming Meng The University of Tokyo Institute for Physics of Intelligence

Tomoyuki Obuchi Kyoto University

Yoshiyuki Kabashima The University of Tokyo Institute for Physics of Intelligence

Oct 18th, 2021

Ising Model Selection

Ising Model

Binary Markov random field (MRF) with pairwise potentials [Wainwright & Jordan, 2008]

 S_0

Binary spins
$$s = (s_i)_{i=0}^{N-1} \in \{-1, +1\}^N$$

Pairwise couplings: $J^* = \left(J_{ij}^*\right)_{i,i} \in \mathbb{R}^{N \times N}$

The Joint Distribution

$$P_{\text{Ising}}\left(\boldsymbol{s}|\boldsymbol{J}^{*}\right) = \frac{1}{Z_{\text{Ising}}\left(\boldsymbol{J}^{*}\right)} \exp\left\{\sum_{i < j} J_{ij}^{*} s_{i} s_{j}\right\}$$

Wide Applications: statistical physics, image analysis, social networking, biology, etc.

Partition function

$$Z_{\text{Ising}}\left(\boldsymbol{J}^{*}\right) = \sum_{\boldsymbol{s}} \exp\left\{\sum_{i < j} J_{ij}^{*} s_{i} s_{j}\right\}$$

[Nguyen et al., 2017; Aurell & Ekeberg, 2012; BachschmidRomano & Opper, 2015; Berg, 2017; Bachschmid-Romano & Opper, 2017; Abbara et al., 2020].

Ising Model Selection

Ising Model

Binary Markov random field (MRF) with pairwise potentials [Wainwright & Jordan, 2008]

 (S_0)

Binary spins
$$s = (s_i)_{i=0}^{N-1} \in \{-1, +1\}^N$$

Pairwise couplings: $J^* = \left(J^*_{ij}\right)_{i,i} \in \mathbb{R}^{N \times N}$

The Joint Distribution

$$P_{\text{Ising}}\left(\boldsymbol{s}|\boldsymbol{J}^{*}\right) = \frac{1}{Z_{\text{Ising}}\left(\boldsymbol{J}^{*}\right)} \exp\left\{\sum_{i < j} J_{ij}^{*} s_{i} s_{j}\right\}$$

Wide Applications: statistical physics, image analysis, social networking, biology, etc.

Ising Model Selection

Partition function

$$Z_{\text{Ising}}\left(\boldsymbol{J}^{*}\right) = \sum_{\boldsymbol{s}} \exp\left\{\sum_{i < j} J_{ij}^{*} s_{i} s_{j}\right\}$$

[Nguyen et al., 2017; Aurell & Ekeberg, 2012; BachschmidRomano & Opper, 2015; Berg, 2017; Bachschmid-Romano & Opper, 2017; Abbara et al., 2020].

Ising Model Selection

Ising Model

Binary Markov random field (MRF) with pairwise potentials [Wainwright & Jordan, 2008]

 (S_0)

Binary spins
$$s = (s_i)_{i=0}^{N-1} \in \{-1, +1\}^N$$

Pairwise couplings: $J^* = \left(J^*_{ij}\right)_{i,i} \in \mathbb{R}^{N \times N}$

The Joint Distribution

$$P_{\text{Ising}}\left(\boldsymbol{s}|\boldsymbol{J}^{*}\right) = \frac{1}{Z_{\text{Ising}}\left(\boldsymbol{J}^{*}\right)} \exp\left\{\sum_{i < j} J_{ij}^{*} s_{i} s_{j}\right\}$$

Wide Applications: statistical physics, image analysis, social networking, biology, etc.

Ising Model Selection

Partition function

$$Z_{\text{Ising}}\left(\boldsymbol{J}^{*}\right) = \sum_{\boldsymbol{s}} \exp\left\{\sum_{i < j} J_{ij}^{*} s_{i} s_{j}\right\}$$

[Nguyen et al., 2017; Aurell & Ekeberg, 2012; BachschmidRomano & Opper, 2015; Berg, 2017; Bachschmid-Romano & Opper, 2017; Abbara et al., 2020].

4

Popular Algorithms

- Mean field methods [Nguyen & Berg, 2012, Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc
- Neighborhood based Methods [Ravikumar et al., 2010;Aurell, Erik&Ekeberg 2012;Lokhov et al., 2018;Wu et al., 2019]

Recovering neighborhood of each node

 $\hat{\mathcal{N}}(i) = \left\{ j \, | \, \hat{J}_{ij} \neq 0, j \in \mathbb{V} \setminus i \right\}, \, \forall i \in \mathbb{V}$

 $\boldsymbol{J}_{\backslash i} \equiv \left(J_{ij}\right)_{j(\neq i)}$

Popular Algorithms

- Mean field methods [Nguyen & Berg, 2012, Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc
- Neighborhood based Methods [Ravikumar et al., 2010; Aurell, Erik&Ekeberg 2012; Lokhov et al., 2018; Wu et al., 2019]

 ℓ_1 -LogR E [Ravikumar

$$\hat{J}_{i} = \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} -\log P\left(s_{i}^{(\mu)} | s_{i}^{(\mu)}, J_{i}\right) + \lambda \| J_{i} \|_{1} \right\} \qquad \text{pseudo-likelihood (PL)} \quad P\left(s_{i} | s_{i}, J_{i}\right) = \frac{1}{Z_{i}} e^{s_{i} \sum_{j \neq i} J_{i}} \int_{i}^{i} \int$$

Interaction

[Lokhov

Popular Algorithms

- Mean field methods [Nguyen & Berg, 2012, Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc
- Neighborhood based Methods [Ravikumar et al., 2010; Aurell, Erik&Ekeberg 2012; Lokhov et al., 2018; Wu et al., 2019]

 ℓ_1 -LogR E [Ravikuman

$$\hat{J}_{ij} = \arg \min_{J_i} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} -\log P\left(s_i^{(\mu)} | s_{ij}^{(\mu)}, J_i\right) + \lambda \| J_{ij} \|_1 \right\} \quad \text{pseudo-likelihood (PL)} \quad P\left(s_i | s_{ij}, J_i\right) = \frac{1}{Z_i} e^{s_i \sum_{j \neq ij} J_i} \int_{ij}^{ij} \int_{ij$$

Interaction

[Lokhov

$$\hat{J}_{\langle i} = \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} -\log P\left(s_{i}^{(\mu)} | s_{\langle i}^{(\mu)}, J_{i}\right) + \lambda \| J_{\langle i} \|_{1} \right\} \qquad \text{pseudo-likelihood (PL)} \quad P\left(s_{i} | s_{\langle i}, J_{i}\right) = \frac{1}{Z_{i}} e^{s_{i} \sum_{j \neq i} J_{i}} \frac{1}{Z_{i}} e^{s_{i} \sum_{j \neq i} J_{i}} \int_{i} \frac{1}{Z_{i}} e^{s_{i} \sum_{j \neq i} Z_{i}} \int_{i} \frac{1}{Z_{i}} \frac{1}{Z_{i}} \int_{i} \frac{1}{Z_{i}} \int_{i} \frac{1}{$$

A Uni as M-

Popular Algorithms

- Mean field methods [Nguyen & Berg, 2012, Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc
- Neighborhood based Methods [Ravikumar et al., 2010; Aurell, Erik&Ekeberg 2012; Lokhov et al., 2018; Wu et al., 2019]

$$\begin{aligned} & \text{for full edge set} \\ & (j) \mid J_{ij}^{*} \neq 0 \\ \\ \hat{J}_{\backslash i} &= \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} -\log P\left(s_{i}^{(\mu)} \mid s_{\backslash i}^{(\mu)}, J_{i}\right) + \lambda \parallel J_{\backslash i} \parallel_{1} \right\} \\ & \text{pseudo-likelihood (PL)} \quad P\left(s_{i} \mid s_{\backslash i}, J_{i}\right) = \frac{1}{Z_{i}} e^{s_{i} \sum_{j \neq i} J_{i}} \\ \hat{J}_{\backslash i} &= \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} e^{-s_{i}^{(\mu)} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}} + \lambda \parallel J_{\backslash i} \parallel_{1} \right\} \\ & \text{pseudo-likelihood (PL)} \quad P\left(s_{i} \mid s_{\backslash i}, J_{i}\right) = \frac{1}{Z_{i}} e^{s_{i} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}} \\ \hat{J}_{\backslash i} &= \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} e^{-s_{i}^{(\mu)} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}} + \lambda \parallel J_{\backslash i} \parallel_{1} \right\} \\ & \text{IS objective (ISO)} \\ & D_{\backslash i} &= \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{i}^{(\mu)} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}\right) + \lambda \parallel J_{\backslash i} \parallel_{1} \right\} \\ & \hat{J}_{\backslash i} &= \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{i}^{(\mu)} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}\right) + \lambda \parallel J_{\backslash i} \parallel_{1} \right\} \\ & \ell(x) &= \left\{ \log\left(1 + e^{-2x}\right) - \ell_{1} \cdot \log R \\ e^{-x} & \text{IS} \\ \end{array} \right\}$$

$$\hat{J}_{\langle i} = \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} -\log P\left(s_{i}^{(\mu)} | s_{\langle i}^{(\mu)}, J_{i}\right) + \lambda \| J_{\langle i} \|_{1} \right\} \qquad \text{pseudo-likelihood (PL)} \quad P\left(s_{i} | s_{\langle i}, J_{i}\right) = \frac{1}{Z_{i}} e^{s_{i} \sum_{j \neq i} J_{i}} \int_{i}^{i} \int_{i}^{i} = \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} e^{-s_{i}^{(\mu)} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}} + \lambda \| J_{\langle i} \|_{1} \right\} \qquad \text{pseudo-likelihood (PL)} \quad P\left(s_{i} | s_{\langle i}, J_{i}\right) = \frac{1}{Z_{i}} e^{s_{i} \sum_{j \neq i} J_{i}} \int_{i}^{i} \int_{i}^{i} \int_{i}^{i} = \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} e^{-s_{i}^{(\mu)} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}} + \lambda \| J_{\langle i} \|_{1} \right\} \qquad \text{IS objective (ISO)} \\ \hat{J}_{\langle i} = \arg\min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} e^{-s_{i}^{(\mu)} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}} + \lambda \| J_{\langle i} \|_{1} \right\} \qquad P\left(x\right) = \left\{ \log\left(1 + e^{-2x}\right) = e^{-s_{i}^{(\mu)} \sum_{j \neq i} J_{ij} s_{j}^{(\mu)}} \int_{i}^{i} \log e^{-x} \right\}$$

One Natural Question: How about other loss functions, e.g., quadratic loss?

Main Contributions

 ℓ_1 -Regularized Linear Regression (ℓ_1 -LinR) [Tibshirani, 1996]

Our main focus $\hat{J}_{i} = \arg \min_{J_{i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} \frac{1}{2} \left(s_{i}^{(\mu)} - \int_{j_{i}}^{M} s_{i}^{(\mu)} \right) \right\}$

- One representative example of *model misspecification*
- ℓ_1 -LinR (LASSO), as one most popular linear estimator, is more efficient than nonlinear ones

$$\sum_{j(\neq i)} J_{ij} S_j^{(\mu)} \right\}^2 + \lambda \| J_{i} \|_1$$

Does it work for binary data?

quadratic loss
$$\ell(x) = \frac{1}{2}(1-x)^2$$

Main Contributions Does it work for binary data? **Our main focus** $\hat{J}_{\backslash i} = \operatorname*{arg\,min}_{J_{\backslash i}} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} \frac{1}{2} \left(s_i^{(\mu)} - \sum_{j(\neq i)} J_{ij} s_j^{(\mu)} \right)^2 + \lambda \| J_{\backslash i} \|_1 \right\}$ quadratic loss $\ell(x) = \frac{1}{2} (1-x)^2$

 ℓ_1 -Regularized Linear Regression (ℓ_1 -LinR) [Tibshirani, 1996]

- One representative example of *model misspecification*
- ℓ_1 -LinR (LASSO), as one most popular linear estimator, is more efficient than nonlinear ones
- **Main Contributions**
 - (RR) graphs
 - An accurate estimate of the *typical* sample complexity of ℓ_1 -LinR: same order $M = O(\log N)$ as ℓ_1 -LogR!

• Our analysis method applies to any ℓ_1 -regularized M-estimator including ℓ_1 -LogR and IS

• A statistical mechanics analysis of the *typical* learning performances of ℓ_1 -LinR for *typical* paramagnetic random regular

- A sharp quantitative prediction of non-asymptotic (moderate M, N) performances of ℓ_1 -LinR, e.g., precision, recall, RSS

10

The ℓ_1 -regularized M-estimator

(s_0 is considered)

$$\hat{J}(\mathcal{D}^M) \equiv \hat{J} = \operatorname*{arg\,min}_{J} \left[\frac{1}{M} \sum_{\mu=1}^{M} \hat{J} \right]$$

Problem Formulation

general loss function

 $\mathbb{E}\left[\frac{1}{M}\sum_{\mu=1}^{M}\mathscr{C}\left(s_{0}^{(\mu)}h^{(\mu)}\right) + \lambda \| \mathbf{J} \|_{1}\right] \qquad \ell(x) = \begin{cases} \frac{1}{2}\left(1-x\right)^{2} & \ell_{1}\text{-LinR} \\ \log\left(1+e^{-2x}\right) & \ell_{1}\text{-LogR} \\ e^{-x} & \mathbf{IS} \end{cases}$

11

The ℓ_1 -regularized M-estimator

(s_0 is considered)

nsidered)
$$\hat{J}(\mathcal{D}^M) \equiv \hat{J} = \arg\min_{J} \left[\frac{1}{M}\sum_{\mu=1}^{M}\right]$$

A Statistical Mechanics System

Hamiltonian

$$\mathcal{H}\left(\boldsymbol{J}|\mathcal{D}^{M}\right) = \sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)}h^{(\mu)}\right) + \lambda M \left\|\boldsymbol{J}\right\|_{1}$$

Boltzmann distribution $P\left(\boldsymbol{J}|\mathcal{D}^{M}\right) = \frac{1}{Z}e^{-\beta \boldsymbol{\tilde{z}}}$

Problem Formulation

general loss function

$$\begin{pmatrix} \left(s_{0}^{(\mu)}h^{(\mu)}\right) + \lambda \| J \| \\ 1 \end{bmatrix} \qquad \ell(x) = \begin{cases} \frac{1}{2}\left(1-x\right)^{2} & \ell_{1} \\ \log\left(1+e^{-2x}\right) & \ell_{1} \\ e^{-x} \end{cases}$$

$$\mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M}) \quad Z = \int d\boldsymbol{J} e^{-\beta \mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M})}$$

 \mathcal{D}^M

plays the role of quenched disorder

[Opper & Saad, 2001; Nishimori, 2001; Mezard& Montanari, 2009]

The ℓ_1 -regularized M-estimator

(s_0 is considered)

$$\hat{J}(\mathcal{D}^M) \equiv \hat{J} = \arg\min_{J} \left| \frac{1}{M} \right|_{M}$$

A Statistical Mechanics System

Problem Formulation

general loss function

$$\begin{pmatrix} s_{0}^{(\mu)}h^{(\mu)} \end{pmatrix} + \lambda \| J \|_{1} \\ log(1 + e^{-2x}) \ell_{1} \\ e^{-x} \\ \end{pmatrix}$$

$$s_0^{(\mu)} h^{(\mu)} \Big) + \lambda M \left\| \boldsymbol{J} \right\|_1$$

$$\mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M}) \quad Z = \int d\boldsymbol{J} e^{-\beta \mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M})}$$

The Boltzmann distribution freezes onto the solution \hat{J} as $\beta \to +\infty!$

 \mathcal{D}^M

plays the role of quenched disorder

[Opper & Saad, 2001; Nishimori, 2001; Mezard& Montanari, 2009]

The ℓ_1 -regularized M-estimator

(s_0 is considered)

$$\hat{J}(\mathcal{D}^M) \equiv \hat{J} = \arg\min_{J} \left| \frac{1}{M} \sum_{\mu=1}^{N} \right|$$

A Statistical Mechanics System

Statistical mechanics analysis

The key quantity
$$f(\mathcal{D}^M) = -\frac{1}{N\beta} \log Z$$

free energy density

Problem Formulation

general loss function

$$\begin{pmatrix} s_{0}^{(\mu)}h^{(\mu)} \end{pmatrix} + \lambda \| J \|_{1} \\ log(1 + e^{-2x}) \ell_{1} \\ e^{-x} \\ \end{pmatrix}$$

$$s_0^{(\mu)} h^{(\mu)} \Big) + \lambda M \left\| \boldsymbol{J} \right\|_1$$

$$\mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M}) \quad Z = \int d\boldsymbol{J} e^{-\beta \mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M})}$$

The Boltzmann distribution freezes onto the solution \hat{J} as $\beta \to +\infty!$

 \mathcal{D}^M

plays the role of quenched disorder

[Opper & Saad, 2001; Nishimori, 2001; Mezard& Montanari, 2009]

14

The ℓ_1 -regularized M-estimator

(s_0 is considered)

$$\hat{J}(\mathcal{D}^M) \equiv \hat{J} = \operatorname*{arg\,min}_{J} \left| \frac{1}{M} \right|_{J}$$

A Statistical Mechanics System

Statistical mechanics analysis

The key quantity
$$f(\mathcal{D}^M) = -rac{1}{Neta}\log Z$$

free energy density

Problem Formulation

general loss function

$$\begin{pmatrix} s_{0}^{(\mu)}h^{(\mu)} \end{pmatrix} + \lambda \| J \|_{1} \\ log(1 + e^{-2x}) \ell_{1} \\ e^{-x}
\end{pmatrix}$$

$$s_0^{(\mu)} h^{(\mu)} \Big) + \lambda M \|\boldsymbol{J}\|_1$$

$$\mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M}) \quad Z = \int d\boldsymbol{J} e^{-\beta \mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M})}$$

The Boltzmann distribution freezes onto the solution \hat{J} as $\beta \to +\infty!$

 \mathcal{D}^M

plays the role of quenched disorder

[Opper & Saad, 2001; Nishimori, 2001; Mezard& Montanari, 2009]

averaged over the disorder, i.e. dataset

average free energy density

15

The \mathcal{C}_1 -regularized M-estimator

(s_0 is considered)

$$\hat{J}(\mathcal{D}^M) \equiv \hat{J} = \operatorname*{arg\,min}_{J} \left| \frac{1}{M} \right|_{J}$$

A Statistical Mechanics System

Statistical mechanics analysis

The key quantity
$$f(\mathcal{D}^M) = -rac{1}{Neta}\log Z$$

free energy density

Problem Formulation

general loss function

$$\begin{pmatrix} s_{0}^{(\mu)}h^{(\mu)} \end{pmatrix} + \lambda \| \mathbf{J} \|_{1} \\ log(1 + e^{-2x}) \ell_{1} \\ e^{-x} \\ \end{pmatrix}$$

$$s_0^{(\mu)} h^{(\mu)} \Big) + \lambda M \|\boldsymbol{J}\|_1$$

$$\mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M}) \quad Z = \int d\boldsymbol{J} e^{-\beta \mathcal{H}(\boldsymbol{J}|\mathcal{D}^{M})}$$

The Boltzmann distribution freezes onto the solution \hat{J} as $\beta \to +\infty!$

 \mathcal{D}^M

plays the role of quenched disorder

[Opper & Saad, 2001; Nishimori, 2001; Mezard& Montanari, 2009]

averaged over the disorder, i.e. dataset

Replica Method

Basic Idea

$$f = -\frac{1}{N\beta} \left[\log Z \right]_{\mathcal{D}^M} =$$

Procedure

- 1. Compute $[Z^n]_{\mathcal{D}^M}$ for $n \in \mathbb{N}$
- 2. Take $N \rightarrow \infty$ limit using Laplace/Saddle-point method
- 3. Obtain an analytically continuable form w.r.t. *n* under appropriate ansatz
 - replica symmetry (RS) is used here (*due to convexity of estimator*)
- 4. Take $n \rightarrow 0$ limit using the obtained analytically continuable form

 $-\lim_{n\to 0} \frac{1}{N\beta} \frac{\partial \log \left[Z^n\right]_{\mathcal{D}^M}}{\partial n}$

[Mézard et al 1987; Opper & Saad, 2001; Nishimori, 2001; Mézard & Montanari, 2009]

Replica Method

Basic Idea

$$f = -\frac{1}{N\beta} \left[\log Z \right]_{\mathcal{D}^M} =$$

Procedure

- 1. Compute $[Z^n]_{\mathcal{D}^M}$ for $n \in \mathbb{N}$
- 2. Take $N \rightarrow \infty$ limit using Laplace/Saddle-point method
- 3. Obtain an analytically continuable form w.r.t. *n* under appropriate ansatz
 - replica symmetry (RS) is used here (*due to convexity of estimator*)
- 4. Take $n \rightarrow 0$ limit using the obtained analytically continuable form

Comments

- 1. In present case for Ising model selection, the detailed replica computation is still far from trivial
 - We use an approach based on *cavity method* [Bachschmid-Romano & Opper 2017, Abbara et al., 2020; Meng et al., 2021]
 - We propose two ansatzs to enable the calculation, which can be (numerically) verified.
- 2. Although the replica method is non-rigorous, our results are supported by experimental results.

 $-\lim_{n\to 0} \frac{1}{N\beta} \frac{\partial \log [Z^n]_{\mathcal{D}^M}}{\partial n}$

[Mézard et al 1987; Opper & Saad, 2001; Nishimori, 2001; Mézard & Montanari, 2009]

Free Energy Result

Result of replica method

$$\begin{split} & \text{In the case of } \ell_1 \text{-LinR estimator} \\ & f\left(\beta \to \infty\right) = -\text{Extr} \\ & \theta \\ & \left\{ \left(\beta \to \infty\right) = -\text{Extr} \\ & \theta \\ & \theta$$

The estimates of ℓ_1 -LinR are decoupled

$$\hat{J} = \arg\min_{J} \left\{ \frac{1}{M} \sum_{\mu=1}^{M} \frac{1}{2} \left(s_{i}^{(\mu)} \right) \right\}$$

(a) Equivalent scalar estimator for the active set

(b) Equivalent scalar estimator for the inactive set

High-dimensional Asymptotic Result

Sample complexity of ℓ_1 -LinR

Definition 1: An estimator is called *model selection consistent* if both the associated precision and recall satisfy *Precision* \rightarrow 1 and *Recall* \rightarrow 1 as $N \rightarrow \infty$.

$$Precision = \frac{TP}{TP + FP}, \quad Recall = \frac{TP}{TP + F}$$

Estimated Results

FN

		Positive	Negative
True Results	Positive	True Positive (TP)	False Negati (FN)
	Negative	False Positive (FP)	True Negativ (TN)

High-dimensional Asymptotic Result

Sample complexity of ℓ_1 -LinR

Definition 1: An estimator is called *model selection consistent* if both the associated precision and recall satisfy *Precision* \rightarrow 1 and *Recall* \rightarrow 1 as $N \rightarrow \infty$.

$$Precision = \frac{TP}{TP + FP}, \quad Recall = \frac{TP}{TP + F}$$

Estimated Results

FN

		Positive	Negative
conico	Positive	True Positive (TP)	False Negati (FN)
N an I	Negative	False Positive (FP)	True Negati (TN)

High-dimensional Asymptotic Result

Sample complexity of ℓ_1 -LinR

$$Precision = \frac{TP}{TP + FP}, \quad Recall = \frac{TP}{TP + F}$$

_		7		
К			-	H
				1
F	2		-	1
			-	1
_	_		-	Η
-	-	-	-	4
-	-	-	-	4
-	-	-	-	+
-	-	-	-	Н
-	-	-	-	۲
-	-	-	-	1
-	-	-	-	1
-	-	-	-	+
-	-	-	-	1
-	-	-	-	1
-	-	_	_	1
3	r			
-	-	-	-	
-				
	Ĵ	7	2]
2			-	1
-	-	-	-	1
-	-	-	-	
-	-	-	-	4
	_	_	_	
		(0	١.

To account for the finite-size effect

Current scalar estimator (a) only produces the mean-value result
 The fluctuations of estimates in the active set Ψ are *averaged out*

To account for the finite-size effect

- Current scalar estimator (a) only produces the mean-value result
 The fluctuations of estimates in the active set Ψ are *averaged out*
- New idea: Replacing expectation in free energy with sample average
 - The modified free energy can be solved iteratively (Algorithm 1)

$$(\beta \to \infty) = -\operatorname{Extr}_{\Theta} \left\{ \begin{array}{c} -\frac{\alpha}{2(1+\chi)} \frac{1}{T_{MC}M} \sum_{t=1}^{T_{MC}} \sum_{\mu=1}^{M} \left(\left(s_{0}^{\mu,t} - \sum_{j \in \Psi} J_{j} s_{j}^{\mu,t} - \sqrt{Q} z^{\mu,t} \right) \right) \\ -\lambda \alpha \sum_{j \in \Psi} \left| \bar{J}_{j} \right| + \left(-ER + F\eta \right) G' \left(-E\eta \right) + \frac{1}{2} EQ - \frac{1}{2} F\chi + \frac{1}{2} KR - \mathbb{E}_{z} \min_{w} \left\{ \frac{K}{2} w^{2} - \sqrt{H} zw + \frac{\lambda M}{\sqrt{N}} |w| \right\} \right\}$$

To account for the finite-size effect

Accounting for the finite-size effect

- Current scalar estimator (a) only produces the mean-value result
 The fluctuations of estimates in the active set Ψ are *averaged out*
- New idea: Replacing expectation in free energy with sample average
 - The modified free energy can be solved iteratively (Algorithm 1)

$$(\beta \to \infty) = -\operatorname{Extr}_{\Theta} \left\{ \begin{array}{c} -\frac{\alpha}{2(1+\chi)} \frac{1}{T_{MC}M} \sum_{t=1}^{T_{MC}} \sum_{\mu=1}^{M} \left(\left(s_{0}^{\mu,t} - \sum_{j \in \Psi} J_{j} s_{j}^{\mu,t} - \sqrt{Q} z^{\mu,t} \right) \right) \\ -\lambda \alpha \sum_{j \in \Psi} \left| \bar{J}_{j} \right| + \left(-ER + F\eta \right) G' \left(-E\eta \right) + \frac{1}{2} EQ - \frac{1}{2} F\chi + \frac{1}{2} KR - \mathbb{E}_{z} \min_{w} \left\{ \frac{K}{2} w^{2} - \sqrt{H} zw + \frac{\lambda M}{\sqrt{N}} |w| \right\} \right\}$$

To account for the finite-size effect

Accounting for the finite-size effect

- Current scalar estimator (a) only produces the mean-value result
 The fluctuations of estimates in the active set Ψ are *averaged out*
- New idea: Replacing expectation in free energy with sample averages
 - The modified free energy can be solved iteratively (Algorithm 1)

$$(\beta \to \infty) = -\operatorname{Extr}_{\Theta} \left\{ \begin{array}{c} -\frac{\alpha}{2(1+\chi)} \frac{1}{T_{MC}M} \sum_{t=1}^{T_{MC}} \sum_{\mu=1}^{M} \left(\left(s_{0}^{\mu,t} - \sum_{j \in \Psi} J_{j} s_{j}^{\mu,t} - \sqrt{Q} z^{\mu,t} \right)^{2} \right) \right) \\ -\lambda \alpha \sum_{j \in \Psi} \left| \bar{J}_{j} \right| + \left(-ER + F\eta \right) G' \left(-E\eta \right) + \frac{1}{2} EQ - \frac{1}{2} F\chi + \frac{1}{2} KR - \mathbb{E}_{z} \min_{w} \left\{ \frac{K}{2} w^{2} - \sqrt{H} zw + \frac{\lambda M}{\sqrt{N}} |w| \right\} \right\}$$

Predicting Non-Asymptotic performances

Given modified estimator (c) and scalar estimator (b), one can then easily obtain the non-asymptotic performances of ℓ_1 -LinR, e.g., Precision, Recall, RSS, with a number of T_{MC} MC simulations

$$\begin{cases} Precision = \frac{1}{T_{\rm MC}} \sum_{t=1}^{T_{\rm MC}} \frac{\left\| \hat{J}_{j,j\in\Psi}^{t} \right\|_{0}}{\left\| \hat{J}_{j,j\in\Psi}^{t} \right\|_{0} + \left\| \hat{J}_{j,j\in\bar{\Psi}}^{t} \right\|_{0}} \\ Recall = \frac{1}{T_{\rm MC}} \sum_{t=1}^{T_{\rm MC}} \frac{\left\| \hat{J}_{j,j\in\Psi}^{t} \right\|_{0}}{d} \\ RSS = \frac{1}{T_{\rm MC}} \sum_{t=1}^{T_{\rm MC}} \sum_{t=1}^{T_{\rm MC}} \sum_{j\in\Psi} \left| \hat{J}_{j}^{t} - K_{0} \right|^{2} + R \end{cases}$$

Experimental Results

Accurate non-Asymptotic Predictions

Ising model:

- RR graph, $K_0 = 0.4, d = 3$
- 2D grid (loopy), $K_0 = 0.2, d = 4$

Estimators:

- ℓ_1 -LinR and ℓ_1 -LogR
- $\lambda = 0.3$ for RR graph
- $\lambda = 0.15$ for 2D grid graph

- Fairly good match between theory and experiments, even for 2D grid.
- ℓ_1 -LinR behave similarly as ℓ_1 -LogR for precision and recall.

Experimental Results

Accurate Sample Complexity Prediction

Ising model: RR graph, $K_0 = 0.4$, d = 3**Estimators**: ℓ_1 -LinR and ℓ_1 -LogR with $\lambda = 0.3$ # samples scaling value $M = c \log N$ Theoretical $c_0 (\lambda = 0.3, K_0) \approx 19.41$ **Prediction**

• Precision

 $c > c_0(\lambda, K_0)$: increasing to 1 as $N \to \infty$

 $c < c_0(\lambda, K_0)$: decreasing to 0 as $N \to \infty$

• Recall

Increasing to 1 as $N \rightarrow \infty$

The prediction of the sample complexity is accurate for ℓ_1 -LinR (and ℓ_1 -LinR)!

Summary

Our work

- estimators. In particular,
- Revealing that ℓ_1 -LinR is model selection consistent with same order of sample complexity as ℓ_1 -LogR
- Providing accurate predictions of both the sample complexity and *non-asymptotic* learning performances
- loops, which supports our findings.

• A unified statistical mechanics framework for precisely investigating the *typical* learning performances of ℓ_1 -regularized M-

- An excellent agreement between the theoretical predictions and experimental results, even for graphs with many

Summary

Our work

- estimators. In particular,
- Revealing that ℓ_1 -LinR is model selection consistent with same order of sample complexity as ℓ_1 -LogR
- Providing accurate predictions of both the sample complexity and *non-asymptotic* learning performances

- An excellent agreement between the theoretical predictions and experimental results, even for graphs with many loops, which supports our findings.

Main Limitations

- Several Key assumptions are made in theoretical analysis, for example:
- Paramagnetic assumption of the Ising model
- Typical tree-like RR graph is considered
- Overcoming such limitations is an important direction for future work

• A unified statistical mechanics framework for precisely investigating the *typical* learning performances of ℓ_1 -regularized M-

31

