Ising Model Selection Using ℓ_{1}－Regularized Linear Regression：

A Statistical Mechanics Analysis

Xiangming Meng
The University of Tokyo
Institute for Physics of Intelligence

Tomoyuki Obuchi
Kyoto University

Oct 18th， 2021

Yoshiyuki Kabashima

The University of Tokyo Institute for Physics of Intelligence

Ising Model Selection

- Ising Model

Binary Markov random field (MRF) with pairwise potentials [Wainwright \& Jordan, 2008]

$$
\begin{array}{lll}
\text { Binary spins } s=\left(s_{i}\right)_{i=0}^{N-1} \in\{-1,+1\}^{N} & \text { node set } & \mathrm{V}=\{0,1, \ldots, N-1\} \\
\text { Pairwise couplings: } \quad J^{*}=\left(J_{i j}^{*}\right)_{i, j} \in \mathbf{R}^{N \times N} & \text { edge set } \quad \mathrm{E}=\left\{(i, j) \mid J_{i j}^{*} \neq 0\right\}
\end{array}
$$

The Joint Distribution

$$
P_{\text {Ising }}\left(\boldsymbol{s} \mid \boldsymbol{J}^{*}\right)=\frac{1}{Z_{\text {Ising }}\left(\boldsymbol{J}^{*}\right)} \exp \left\{\sum_{i<j} J_{i j}^{*} s_{i} s_{j}\right\} \quad Z_{\text {Ising }}\left(\boldsymbol{J}^{*}\right)=\sum_{s} \exp \left\{\sum_{i<j} J_{i j}^{*} s_{i} s_{j}\right\}
$$

Wide Applications: statistical physics, image analysis, social networking, biology, etc.

Ising Model Selection

- Ising Model

Binary Markov random field (MRF) with pairwise potentials [Wainwright \& Jordan, 2008]

$$
\begin{aligned}
& \text { Binary spins } \quad \boldsymbol{s}=\left(s_{i}\right)_{i=0}^{N-1} \in\{-1,+1\}^{N} \\
& \text { Pairwise couplings: } \quad \boldsymbol{J}^{*}=\left(J_{i j}^{*}\right)_{i, j} \in \mathbf{R}^{N \times N}
\end{aligned}
$$

$$
G=(\mathrm{V}, \mathrm{E})
$$

$$
\begin{array}{ll}
\text { node set } & \mathrm{V}=\{0,1, \ldots, N-1\} \\
\text { edge set } & \mathrm{E}=\left\{(i, j) \mid J_{i j}^{*} \neq 0\right\}
\end{array}
$$

The Joint Distribution

$$
P_{\text {Ising }}\left(\boldsymbol{s} \mid \boldsymbol{J}^{*}\right)=\frac{1}{Z_{\text {Ising }}\left(\boldsymbol{J}^{*}\right)} \exp \left\{\sum_{i<j} J_{i j}^{*} s_{i} s_{j}\right\} \quad Z_{\text {Ising }}\left(\boldsymbol{J}^{*}\right)=\sum_{s} \exp \left\{\sum_{i<j} J_{i j}^{*} s_{i} s_{j}\right\}
$$

Wide Applications: statistical physics, image analysis, social networking, biology, etc.
[Nguyen et al., 2017; Aurell \& Ekeberg, 2012; BachschmidRomano \& Opper, 2015; Berg, 2017; Bachschmid-Romano \& Opper, 2017; Abbara et al., 2020].

- Ising Model Selection

$$
G=(\mathrm{V}, \mathrm{E})
$$

$$
\boldsymbol{J}^{*}=\left(J_{i j}^{*}\right)_{i, j} \in \mathbf{R}^{N \times N}
$$

Ising Model Selection

- Ising Model

Binary Markov random field (MRF) with pairwise potentials [Wainwright \& Jordan, 2008]

$$
\begin{aligned}
& \text { Binary spins } \quad s=\left(s_{i}\right)_{i=0}^{N-1} \in\{-1,+1\}^{N} \\
& \text { Pairwise couplings: } \quad \boldsymbol{J}^{*}=\left(J_{i j}^{*}\right)_{i, j} \in \mathbf{R}^{N \times N}
\end{aligned}
$$

$$
G=(\mathrm{V}, \mathrm{E})
$$

$$
\begin{array}{ll}
\text { node set } & \mathrm{V}=\{0,1, \ldots, N-1\} \\
\text { edge set } & \mathrm{E}=\left\{(i, j) \mid J_{i j}^{*} \neq 0\right\}
\end{array}
$$

The Joint Distribution

$$
P_{\text {Ising }}\left(\boldsymbol{s} \mid \boldsymbol{J}^{*}\right)=\frac{1}{Z_{\text {Ising }}\left(\boldsymbol{J}^{*}\right)} \exp \left\{\sum_{i<j} J_{i j}^{*} s_{i} s_{j}\right\} \quad Z_{\text {Ising }}\left(\boldsymbol{J}^{*}\right)=\sum_{s} \exp \left\{\sum_{i<j} J_{i j}^{*} s_{i} s_{j}\right\}
$$

Wide Applications: statistical physics, image analysis, social networking, biology, etc.
[Nguyen et al., 2017; Aurell \& Ekeberg, 2012; BachschmidRomano \& Opper 2015; Berg, 2017; Bachschmid-Romano \& Opper, 2017; Abbara et al., 2020].

- Ising Model Selection

$$
G=(\mathrm{V}, \mathrm{E})
$$

$$
\boldsymbol{J}^{*}=\left(J_{i j}^{*}\right)_{i, j} \in \mathbf{R}^{N \times N}
$$

The edge set $E=$?

Structure Learning Problem (Inverse Ising problem)

Overview and Motivations

- Popular Algorithms

- Mean field methods [Nguyen \&Berg, 2012,Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc
- Neighborhood based Methods [Ravikumar et al., 2010;Aurell, Erik\&Ekeberg 2012;Lokhov et al., 2018;Wu et al., 2019]

Overview and Motivations

- Popular Algorithms

- Mean field methods [Nguyen \&Berg, 2012,Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc
- Neighborhood based Methods [Ravikumar et al., 2010;Aurell, Erik\&Ekeberg 2012;Lokhov et al., 2018;Wu et al., 2019]

[^0]$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M}-\log P\left(s_{i}^{(\mu)} \mid s_{\backslash i}^{(\mu)}, J_{i}\right)+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\}
$$
$$
\underset{\text { [Besag, 1975] }}{\text { pseudo-likelihood (PL) }} P\left(s_{i} \mid s_{\backslash i}, \boldsymbol{J}_{i}\right)=\frac{1}{Z_{i}} e^{s_{i} \sum_{j(\neq i)} J_{i j} s_{j}}
$$

Interaction Screening (IS)
[Lokhov et al., 2018]

$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} e^{-s_{i}^{(\mu)} \sum_{j(\neq i)} J_{i j} s_{j}^{(\mu)}}+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\} \quad \begin{gathered}
\text { IS objective (ISO) } \\
\text { [Lokhov et al., 2018] }
\end{gathered} \quad e^{-s_{i}^{(\mu)} \sum_{j(\neq i)} J_{i j} s_{j}^{(\mu)}}
$$

Overview and Motivations

- Popular Algorithms

- Mean field methods [Nguyen \&Berg, 2012,Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc
- Neighborhood based Methods [Ravikumar et al., 2010;Aurell, Erik\&Ekeberg 2012;Lokhov et al., 2018; Wu et al., 2019]

$$
\boldsymbol{J}_{\backslash i} \equiv\left(J_{i j}\right)_{j(\neq i)}
$$

[^1]$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M}-\log P\left(s_{i}^{(\mu)} \mid s_{\backslash i}^{(\mu)}, \boldsymbol{J}_{i}\right)+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\}
$$
$$
\underset{[\text { Besag, 1975] }}{\text { pseudo-likelihood (PL) }} \quad P\left(s_{i} \mid s_{\backslash i}, \boldsymbol{J}_{i}\right)=\frac{1}{Z_{i}} e^{s_{i} \sum_{j(\neq i)} J_{i j} s_{j}}
$$

Interaction Screening (IS)
[Lokhov et al., 2018]

$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} e^{-s_{i}^{(\mu)} \sum_{j(\neq i)} J_{i j} S_{j}^{(\mu)}}+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\}
$$

$$
\text { IS objective (ISO) } \quad e^{-s_{i}^{(\mu)} \sum_{j(\neq i)} J_{i j} s_{j}^{(\mu)}}
$$

[Lokhov et al., 2018]

$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{i}^{(\mu)} \sum_{j(\neq i)} J_{i j} s_{j}^{(\mu)}\right)+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\} \quad \ell(x)=\left\{\begin{array}{lc}
\log \left(1+e^{-2 x}\right) & \ell_{1}-\operatorname{LogR} \\
e^{-x} & \text { IS }
\end{array}\right.
$$

Overview and Motivations

- Popular Algorithms

- Mean field methods [Nguyen \&Berg, 2012,Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc
- Neighborhood based Methods [Ravikumar et al., 2010;Aurell, Erik\&Ekeberg 2012;Lokhov et al., 2018;Wu et al., 2019]

$$
\boldsymbol{J}_{\backslash i} \equiv\left(J_{i j}\right)_{j(\neq i)}
$$

[^2]$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M}-\log P\left(s_{i}^{(\mu)} \mid s_{\backslash i}^{(\mu)}, \boldsymbol{J}_{i}\right)+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\}
$$
$$
\underset{\text { [Besag, 1975] }}{\text { pseudo-likelihood (PL) }} P\left(s_{i} \mid \boldsymbol{s}_{\backslash i}, \boldsymbol{J}_{i}\right)=\frac{1}{Z_{i}} e^{s_{i} \sum_{j(\neq i)} J_{i j} s_{j}}
$$

Interaction Screening (IS)
[Lokhov et al., 2018]

$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} e^{-s_{i}^{(\mu)} \sum_{j(\neq i)} J_{i j} s_{j}^{(\mu)}}+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\}
$$

[Lokhov et al., 2018]

$$
\text { IS objective (ISO) } \quad e^{-s_{i}^{(\mu)} \sum_{j(\neq i)} J_{i j} s_{j}^{(\mu)}}
$$

[Lokhov et al., 2018]

$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} l\left(s_{i}^{(\mu)} \sum_{j(\neq i)} J_{i j} S_{j}^{(\mu)}\right)+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\} \quad \ell(x)=\left\{\begin{array}{lc}
\log \left(1+e^{-2 x}\right) & \ell_{1}-\operatorname{LogR} \\
e^{-x} & \text { IS }
\end{array}\right.
$$

Main Contributions

- ℓ_{1}-Regularized Linear Regression (ℓ_{1}-LinR) [Tibshirani, 1996]

Our main focus $\quad \hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{\backslash i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} \frac{1}{2}\left(s_{i}^{(\mu)}-\sum_{j \neq i)} J_{i j} s_{j}^{(\mu)}\right)^{2}+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\}$

- One representative example of model misspecification
- ℓ_{1}-LinR (LASSO), as one most popular linear estimator, is more efficient than nonlinear ones

Main Contributions

- ℓ_{1}-Regularized Linear Regression (ℓ_{1}-LinR) [Tibshirani, 1996]

Our main focus $\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{i i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} \frac{1}{2}\left(s_{i}^{(\mu)}-\sum_{j \neq i)} J_{i j} s_{j}^{(\mu)}\right)^{2}+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\}$

Does it work

$$
\hat{\boldsymbol{J}}_{\backslash i}=\underset{\boldsymbol{J}_{\backslash i}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} \frac{1}{2}\left(S_{i}^{(\mu)}-\sum_{j(\neq i)} J_{i j^{\prime}}^{(\mu)}\right)_{j}^{2}+\lambda\left\|\boldsymbol{J}_{\backslash i}\right\|_{1}\right\}
$$

- One representative example of model misspecification
- ℓ_{1}-LinR (LASSO), as one most popular linear estimator, is more efficient than nonlinear ones
- Main Contributions
- A statistical mechanics analysis of the typical learning performances of ℓ_{1}-LinR for typical paramagnetic random regular (RR) graphs
- An accurate estimate of the typical sample complexity of ℓ_{1}-LinR: same order $M=\mathcal{O}(\log N)$ as ℓ_{1}-LogR!
- A sharp quantitative prediction of non-asymptotic (moderate M, N) performances of ℓ_{1}-LinR, e.g., precision, recall, RSS
- Our analysis method applies to any ℓ_{1}-regularized \mathbf{M}-estimator including ℓ_{1}-LogR and IS

Problem Formulation

- Statistical Mechanics Perspective

The ℓ_{1}-regularized M -estimator

$$
\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right) \equiv \hat{\boldsymbol{J}}=\underset{\boldsymbol{J}}{\arg \min }\left[\frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda\|\boldsymbol{J}\|_{1}\right]
$$

$$
\ell(x)=\left\{\begin{array}{lc}
\frac{1}{2}(1-x)^{2} & \ell_{1}-\operatorname{LinR} \\
\log \left(1+e^{-2 x}\right) & \ell_{1}-\operatorname{LogR} \\
e^{-x} & \text { IS }
\end{array}\right.
$$

Problem Formulation

- Statistical Mechanics Perspective

The ℓ_{1}-regularized M -estimator

(s_{0} is considered)

$$
\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right) \equiv \hat{\boldsymbol{J}}=\underset{\boldsymbol{J}}{\arg \min }\left[\frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda\|\boldsymbol{J}\|_{1}\right] \quad \ell(x)= \begin{cases}\frac{1}{2}(1-x)^{2} & \ell_{1}-\operatorname{LinR} \\ \log \left(1+e^{-2 x}\right) & \ell_{1}-\operatorname{LogR} \\ e^{-x} & \text { IS }\end{cases}
$$

A Statistical Mechanics System

$$
\mathcal{D}^{M}
$$

plays the role of
Boltzmann distributior $P\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)=\frac{1}{Z} e^{-\beta \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)} \quad Z=\int d \boldsymbol{J} e^{-\beta \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)}$

Problem Formulation

- Statistical Mechanics Perspective

The ℓ_{1}-regularized M -estimator

$$
\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right) \equiv \hat{\boldsymbol{J}}=\underset{\boldsymbol{J}}{\arg \min }\left[\frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda\|\boldsymbol{J}\|_{1}\right] \quad \ell(x)= \begin{cases}\frac{1}{2}(1-x)^{2} & \ell_{1}-\operatorname{LinR} \\ \log \left(1+e^{-2 x}\right) & \ell_{1}-\operatorname{LogR} \\ e^{-x} & \text { IS }\end{cases}
$$

A Statistical Mechanics System

$$
\mathcal{D}^{M}
$$

plays the role of quenched disorder
[Opper \& Saad, 2001; Nishimori, 2001; Mezard\& Montanari, 2009]

Problem Formulation

- Statistical Mechanics Perspective

The ℓ_{1}-regularized M-estimator

(s_{0} is considered)

$$
\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right) \equiv \hat{\boldsymbol{J}}=\underset{\boldsymbol{J}}{\arg \min }\left[\frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda\|\boldsymbol{J}\|_{1}\right] \quad \ell(x)= \begin{cases}\frac{1}{2}(1-x)^{2} & \ell_{1}-\operatorname{LinR} \\ \log \left(1+e^{-2 x}\right) & \ell_{1}-\operatorname{LogR} \\ e^{-x} & \text { IS }\end{cases}
$$

A Statistical Mechanics System
general loss function

$$
\begin{gathered}
\text { Hamiltonian } \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)=\sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda M\|\boldsymbol{J}\|_{1} \\
\text { Boltzmann distributior } P\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)=\frac{1}{Z} e^{-\beta \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)} \quad Z=\int d \boldsymbol{J} e^{-\beta \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)} \\
\beta \rightarrow+\infty \quad \begin{array}{l}
\text { The Boltzmann distribution freezes } \\
\text { onto the solution } \hat{J} \text { as } \beta \rightarrow+\infty!
\end{array} \\
\delta\left(\boldsymbol{J}-\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right)\right) \quad \begin{array}{l}
\text { on })
\end{array} \\
\hline
\end{gathered}
$$

$$
\mathcal{D}^{M}
$$

plays the role of quenched disorder
[Opper \& Saad, 2001; Nishimori, 2001; Mezard\& Montanari, 2009]

Statistical mechanics analysis

The key quantity $f\left(\mathcal{D}^{M}\right)=-\frac{1}{N \beta} \log Z$

free energy density

Problem Formulation

- Statistical Mechanics Perspective

The ℓ_{1}-regularized M-estimator

(s_{0} is considered)

$$
\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right) \equiv \hat{\boldsymbol{J}}=\underset{\boldsymbol{J}}{\arg \min }\left[\frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda\|\boldsymbol{J}\|_{1}\right] \quad \ell(x)= \begin{cases}\frac{1}{2}(1-x)^{2} & \ell_{1}-\operatorname{LinR} \\ \log \left(1+e^{-2 x}\right) & \ell_{1}-\operatorname{LogR} \\ e^{-x} & \text { IS }\end{cases}
$$

A Statistical Mechanics System
general loss function

$$
\text { Hamiltonian } \quad \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)=\sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda M\|\boldsymbol{J}\|_{1}
$$

$$
\text { Boltzmann distributior } P\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)=\frac{1}{Z} e^{-\beta \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)} \quad Z=\int d \boldsymbol{J} e^{-\beta \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)}
$$

$$
\delta\left(\boldsymbol{J}-\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right)\right)
$$

Statistical mechanics analysis

The key quantity $f\left(\mathcal{D}^{M}\right)=-\frac{1}{N \beta} \log Z$ free energy density
[Nishimori, 2001]
Self-Averaging

The Boltzmann distribution freezes onto the solution \hat{J} as $\beta \rightarrow+\infty$!
averaged over the

$$
\mathcal{D}^{M}
$$

plays the role of quenched disorder
[Opper \& Saad, 2001; Nishimori, 2001;
Mezard\& Montanari, 2009]
disorder, i.e. dataset
$f=-\frac{1}{N \beta}[\log Z]_{\mathcal{D}^{M}}^{\nearrow}$ average free energy density

Problem Formulation

- Statistical Mechanics Perspective

The ℓ_{1}-regularized M-estimator

A Statistical Mechanics System

(s_{0} is considered)

$$
\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right) \equiv \hat{\boldsymbol{J}}=\underset{\boldsymbol{J}}{\arg \min }\left[\frac{1}{M} \sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda\|\boldsymbol{J}\|_{1}\right] \quad \ell(x)= \begin{cases}\frac{1}{2}(1-x)^{2} & \ell_{1}-\operatorname{LinR} \\ \log \left(1+e^{-2 x}\right) & \ell_{1}-\operatorname{LogR} \\ e^{-x} & \text { IS }\end{cases}
$$

general loss function

$$
\text { Hamiltonian } \quad \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)=\sum_{\mu=1}^{M} \ell\left(s_{0}^{(\mu)} h^{(\mu)}\right)+\lambda M\|\boldsymbol{J}\|_{1}
$$

$$
\text { Boltzmann distrilbutior } P\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)=\frac{1}{Z} e^{-\beta \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)} \quad Z=\int d \boldsymbol{J} e^{-\beta \mathcal{H}\left(\boldsymbol{J} \mid \mathcal{D}^{M}\right)}
$$

$$
\delta\left(\boldsymbol{J}-\hat{\boldsymbol{J}}\left(\mathcal{D}^{M}\right)\right)
$$

The Boltzmann distribution freezes onto the solution \hat{J} as $\beta \rightarrow+\infty$!

$$
\mathcal{D}^{M}
$$

plays the role of quenched disorder
[Opper \& Saad, 2001; Nishimori, 2001;
Mezard\& Montanari, 2009]
averaged over the
Statistical mechanics analysis

The key quantity $f\left(\mathcal{D}^{M}\right)=-\frac{1}{N \beta} \log Z$ free energy density
[Nishimori, 2001]

for large N, M
 average free energy density

Difficult to calculate and we resort to the and we resort to the
replica method!

Replica Method

- Basic Idea

$$
f=-\frac{1}{N \beta}[\log Z]_{\mathcal{D}^{M}}=-\lim _{n \rightarrow 0} \frac{1}{N \beta} \frac{\partial \log \left[Z^{n}\right]_{\mathcal{D}^{M}}}{\partial n}
$$

- Procedure

1. Compute $\left[Z^{n}\right]_{D^{M}}$ for $n \in \mathbb{N}$
2. Take $N \rightarrow \infty$ limit using Laplace/Saddle-point method
3. Obtain an analytically continuable form w.r.t. n under appropriate ansatz - replica symmetry (RS) is used here (due to convexity of estimator)
4. Take $n \rightarrow 0$ limit using the obtained analytically continuable form

Replica Method

- Basic Idea

$$
f=-\frac{1}{N \beta}[\log Z]_{\mathcal{D}^{M}}=-\lim _{n \rightarrow 0} \frac{1}{N \beta} \frac{\partial \log \left[Z^{n}\right]_{\mathcal{D}^{M}}}{\partial n}
$$

- Procedure

1. Compute $\left[Z^{n}\right]_{\mathcal{D}^{M}}$ for $n \in \mathbb{N}$
2. Take $N \rightarrow \infty$ limit using Laplace/Saddle-point method
3. Obtain an analytically continuable form w.r.t. n under appropriate ansatz - replica symmetry (RS) is used here (due to convexity of estimator)
4. Take $n \rightarrow 0$ limit using the obtained analytically continuable form

- Comments

1. In present case for Ising model selection, the detailed replica computation is still far from trivial

- We use an approach based on cavity method [Bachschmid-Romano \& Opper 2017, Abbara et al., 2020; Meng et al., 2021]
- We propose two ansatzs to enable the calculation, which can be (numerically) verified.

2. Although the replica method is non-rigorous, our results are supported by experimental results.

Free Energy Result

- Result of replica method

$\left[G(x)=-\frac{1}{2} \log x-\frac{1}{2}+\underset{\Lambda}{\operatorname{Extr}}\left\{-\frac{1}{2} \int \log (\Lambda-\gamma) \rho(\gamma) d \gamma+\frac{\Lambda}{2} x\right\}\right.$
$\rho(\lambda)$ eigenvalue distribution (EVD) of covariance matrix C^{10} of Ising model without s_{0} (available for RR graph)
$\left\{\Theta=\left\{\chi, Q, E, R, F, \eta, K, H,\left\{\bar{J}_{j}\right\}_{j \in \Psi}\right\}\right.$
Extr $\{\cdot\}$ denotes extremization operation over parameters Θ
$\mathbb{E}_{s, z}$ denotes joint expectation with s, z, where $z \sim \mathcal{N}(0,1)$ and $s \propto e^{s_{0} \sum_{j \in \Psi} J_{j}^{*} s_{j}}$

\[

\]

Equivalent Probabilistic Model of ℓ_{1}-LinR

- The estimates of ℓ_{1}-LinR are decoupled

$$
\hat{\boldsymbol{J}}=\underset{\boldsymbol{J}}{\arg \min }\left\{\frac{1}{M} \sum_{\mu=1}^{M} \frac{1}{2}\left(s_{i}^{(\mu)}-\sum_{j(\neq i)} J_{i j} s_{j}^{(\mu)}\right)^{2}+\lambda\|\boldsymbol{J}\|_{1}\right\}
$$

Decoupled (Replica method)

Probabilistic Model of ℓ_{1}-LinR
Statistically equivalent to two scalar estimators!

(a) Equivalent scalar estimator for the active set

(b) Equivalent scalar estimator for the inactive set

High-dimensional Asymptotic Result

- Sample complexity of ℓ_{1}-LinR

Definition 1: An estimator is called model selection consistent if both the associated precision and recall satisfy Precision $\rightarrow 1$ and Recall $\rightarrow 1$ as $N \rightarrow \infty$.

$$
\text { Precision }=\frac{T P}{T P+F P}, \quad \text { Recall }=\frac{T P}{T P+F N}
$$

High-dimensional Asymptotic Result

- Sample complexity of ℓ_{1}-LinR

Definition 1: An estimator is called model selection consistent if both the associated precision and recall satisfy Precision $\rightarrow 1$ and Recall $\rightarrow 1$ as $N \rightarrow \infty$.

$$
\text { Precision }=\frac{T P}{T P+F P}, \quad \text { Recall }=\frac{T P}{T P+F N}
$$

$$
\begin{aligned}
& \text { Results from the two scalar estimators: } \\
& \qquad \begin{array}{ll}
F P<\frac{1}{\sqrt{\pi}} e^{-\frac{\lambda^{2} M}{2 \Delta}+\log N} \rightarrow 0 \text { as } N \rightarrow \infty & \text { if } \mathrm{M}>\frac{2 \triangle \log \mathrm{~N}}{\lambda^{2}} \\
F N \rightarrow 0 \text { as } N \rightarrow \infty & \text { if } 0<\lambda<\tanh \left(\mathrm{K}_{0}\right)
\end{array}
\end{aligned}
$$

Estimated Results

	Positive	Negative
	Positive	True Positive
	False Negative	

To achieve

model selection consistency

$$
\begin{array}{cl}
\begin{array}{c}
\text { Sample } \\
\text { complexity }
\end{array} & M>\frac{c\left(\lambda, K_{0}\right) \log N}{\lambda^{2}}, \lambda \in\left(0, \tanh \left(K_{0}\right)\right) \\
\text { Lower bound } & M>\frac{2 \log N}{\tanh ^{2}\left(K_{0}\right)} \quad \lambda \rightarrow \tanh \left(K_{0}\right)
\end{array}
$$

High-dimensional Asymptotic Result

Sample complexity of ℓ_{1}-LinR

Definition 1: An estimator is called model selection consistent if both the associated precision and recall satisfy Precision $\rightarrow 1$ and Recall $\rightarrow 1$ as $N \rightarrow \infty$.

$$
\text { Precision }=\frac{T P}{T P+F P}, \quad \text { Recall }=\frac{T P}{T P+F N}
$$

To achieve model selection consistency

Non-Asymptotic Predictions

- To account for the finite-size effect

(a) Equivalent scalar estimator for the active set
- Current scalar estimator (a) only produces the mean-value result
- The fluctuations of estimates in the active set Ψ are averaged out

Non-Asymptotic Predictions

- To account for the finite-size effect

(a) Equivalent scalar estimator for the active set
- Current scalar estimator (a) only produces the mean-value result
- The fluctuations of estimates in the active set Ψ are averaged out
- New idea: Replacing expectation in free energy with sample average
- The modified free energy can be solved iteratively (Algorithm 1)
$f(\beta \rightarrow \infty)=-\operatorname{Extr}_{\Theta}\left\{\begin{array}{c}-\frac{\alpha}{2(1+\chi)} \frac{1}{T_{M C} M} \sum_{t=1}^{T_{M C}} \sum_{\mu=1}^{M}\left(\left(s_{0}^{\mu, t}-\sum_{j \in \Psi} J_{j} s_{j}^{\mu, t}-\sqrt{Q} z^{\mu, t}\right)^{2}\right) \\ -\lambda \alpha \sum_{j \in \Psi}\left|\bar{J}_{j}\right|+(-E R+F \eta) G^{\prime}(-E \eta)+\frac{1}{2} E Q-\frac{1}{2} F \chi+\frac{1}{2} K R-\frac{1}{2} H \eta \\ -\mathbb{E}_{z} \min _{w}\left\{\frac{K}{2} w^{2}-\sqrt{H} z w+\frac{\lambda M}{\sqrt{N}}|w|\right\}\end{array}\right\}$

Non-Asymptotic Predictions

■ To account for the finite-size effect

(a) Equivalent scalar estimator for the active set

Accounting for the finite-size effect

$$
\begin{aligned}
& \text { (c) Equivalent } d \text {-dimensional estimator for active set }
\end{aligned}
$$

- Current scalar estimator (a) only produces the mean-value result
- The fluctuations of estimates in the active set Ψ are averaged out
- New idea: Replacing expectation in free energy with sample average
- The modified free energy can be solved iteratively (Algorithm 1)
$f(\beta \rightarrow \infty)=-\operatorname{Extr}_{\Theta}\left\{\begin{array}{c}-\frac{\alpha}{2(1+\chi)} \frac{1}{T_{M C} M} \sum_{t=1}^{T_{M C}} \sum_{\mu=1}^{M}\left(\left(s_{0}^{\mu, t}-\sum_{j \in \Psi} J_{j} s_{j}^{\mu, t}-\sqrt{Q} z^{\mu, t}\right)^{2}\right) \\ -\lambda \alpha \sum_{j \in \Psi}\left|\bar{J}_{j}\right|+(-E R+F \eta) G^{\prime}(-E \eta)+\frac{1}{2} E Q-\frac{1}{2} F \chi+\frac{1}{2} K R-\frac{1}{2} H \eta \\ -\mathbb{E}_{z} \min _{w}\left\{\frac{K}{2} w^{2}-\sqrt{H} z w+\frac{\lambda M}{\sqrt{N}}|w|\right\}\end{array}\right\}$

Non-Asymptotic Predictions

- To account for the finite-size effect

(a) Equivalent scalar estimator for the active set

Accounting for the finite-size effect

(c) Equivalent d-dimensional estimator for active set

- Current scalar estimator (a) only produces the mean-value result
- The fluctuations of estimates in the active set Ψ are averaged out
- New idea: Replacing expectation in free energy with sample averages
- The modified free energy can be solved iteratively (Algorithm 1)

$$
f(\beta \rightarrow \infty)=-\operatorname{Extr}_{\Theta}\left\{\begin{array}{c}
-\frac{\alpha}{2(1+\chi)} \frac{1}{T_{M C} M} \sum_{t=1}^{T_{M C}} \sum_{\mu=1}^{M}\left(\left(s_{0}^{\mu, t}-\sum_{j \in \Psi} J_{j} s_{j}^{\mu, t}-\sqrt{Q} z^{\mu, t}\right)^{2}\right) \\
-\lambda \alpha \sum_{j \in \Psi}\left|\bar{J}_{j}\right|+(-E R+F \eta) G^{\prime}(-E \eta)+\frac{1}{2} E Q-\frac{1}{2} F \chi+\frac{1}{2} K R-\frac{1}{2} H \eta \\
-\mathbb{E}_{z} \min _{w}\left\{\frac{K}{2} w^{2}-\sqrt{H} z w+\frac{\lambda M}{\sqrt{N}}|w|\right\}
\end{array}\right\}
$$

Predicting Non-Asymptotic performances

Given modified estimator (c) and scalar estimator (b), one can then easily obtain the non-asymptotic performances of ℓ_{1}-LinR, e.g., Precision, Recall, RSS, with a number of $T_{M C} \mathrm{MC}$ simulations

$$
\left\{\begin{array}{l}
\text { Precision }=\frac{1}{T_{\mathrm{MC}}} \sum_{t=1}^{T_{\mathrm{MC}}} \frac{\left\|\hat{J}_{j, j \in \Psi}^{t}\right\|_{0}}{\left\|\hat{J}_{j, j \in \Psi}^{t}\right\|_{0}+\left\|\hat{J}_{j, j \in \bar{\Psi}}^{t}\right\|_{0}} \\
\text { Recall }=\frac{1}{T_{\mathrm{MC}}} \sum_{t=1}^{T_{\mathrm{MC}}} \frac{\left\|\hat{J}_{j, j \in \Psi}^{t}\right\|_{0}}{d} \\
R S S=\frac{1}{T_{\mathrm{MC}}} \sum_{t=1}^{T_{\mathrm{MC}}} \sum_{j \in \Psi}\left|\hat{J}_{j}^{t}-K_{0}\right|^{2}+R
\end{array}\right.
$$

Experimental Results

■ Accurate non-Asymptotic Predictions

Ising model:

- RR graph, $K_{0}=0.4, d=3$
- 2D grid (loopy), $K_{0}=0.2, d=4$

Estimators:

ℓ_{1}-LinR and ℓ_{1}-LogR
$\lambda=0.3$ for RR graph
$\lambda=0.15$ for 2 D grid graph

- Fairly good match between theory and experiments, even for 2D grid.
- ℓ_{1}-LinR behave similarly as ℓ_{1} -LogR for precision and recall.

Precision, 2D grid, $\mathbf{N}=225, \lambda=0.15$

Recall, $\mathbf{N}=200, \lambda=0.3$

Experimental Results

- Accurate Sample Complexity Prediction

Ising model: RR graph, $K_{0}=0.4, d=3$
Estimators: ℓ_{1}-LinR and ℓ_{1}-LogR with $\lambda=0.3$
\# samples

- Precision
$c>c_{0}\left(\lambda, K_{0}\right):$ increasing to 1 as $N \rightarrow \infty$
$c<c_{0}\left(\lambda, K_{0}\right)$: decreasing to 0 as $N \rightarrow \infty$

- Recall

$$
\text { Increasing to } 1 \text { as } N \rightarrow \infty
$$

The prediction of the sample complexity is accurate for ℓ_{1}-LinR (and ℓ_{1}-LinR) !

Summary

- Our work
- A unified statistical mechanics framework for precisely investigating the typical learning performances of ℓ_{1}-regularized Mestimators. In particular,
- Revealing that ℓ_{1}-LinR is model selection consistent with same order of sample complexity as $\ell_{1}-\operatorname{LogR}$
- Providing accurate predictions of both the sample complexity and non-asymptotic learning performances
- An excellent agreement between the theoretical predictions and experimental results, even for graphs with many loops, which supports our findings.

Summary

- Our work
- A unified statistical mechanics framework for precisely investigating the typical learning performances of ℓ_{1}-regularized Mestimators. In particular,
- Revealing that ℓ_{1}-LinR is model selection consistent with same order of sample complexity as $\ell_{1}-\operatorname{LogR}$
- Providing accurate predictions of both the sample complexity and non-asymptotic learning performances
- An excellent agreement between the theoretical predictions and experimental results, even for graphs with many loops, which supports our findings.

- Main Limitations

- Several Key assumptions are made in theoretical analysis, for example:
- Paramagnetic assumption of the Ising model
- Typical tree-like RR graph is considered
- Overcoming such limitations is an important direction for future work

Thank you!

Q\&A

[^0]: ℓ_{1}-LogR Estimator
 [Ravikumar et al., 2010]

[^1]: ℓ_{1}-LogR Estimator
 [Ravikumar et al., 2010]

[^2]: ℓ_{1}-LogR Estimator
 [Ravikumar et al., 2010]

