Multi-Armed Bandits with Bounded Arm-Memory: Near-Optimal Guarantees for Best-Arm Identification and Regret Minimization

Arnab Maiti, Indian Institute of Technology, Kharagpur Vishakha Patil, Indian Institute of Science, Bangalore Arindam Khan, Indian Institute of Science, Bangalore

Multi-Armed Bandits

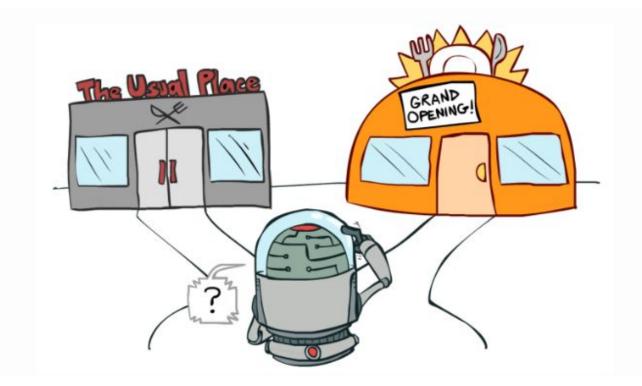
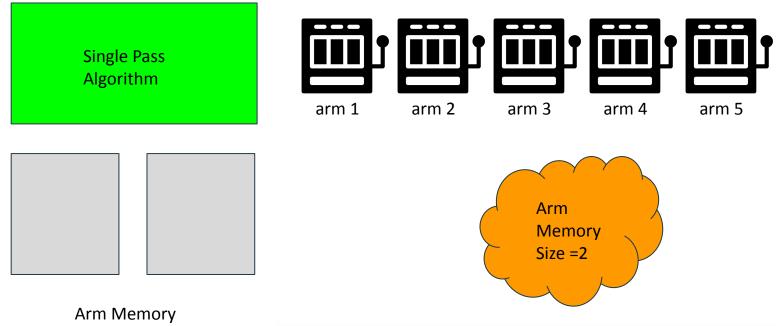


Image source: UC Berkeley AI course slide, lecture 11



Adversarial order arrival

Image source: slot machine by Deemak Daksina from the Noun Project

Adversarial order arrival

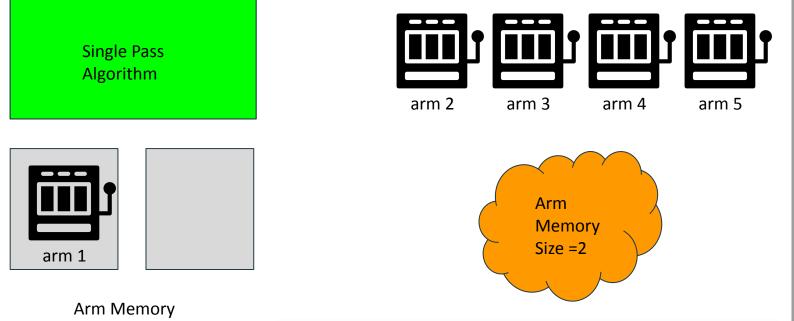


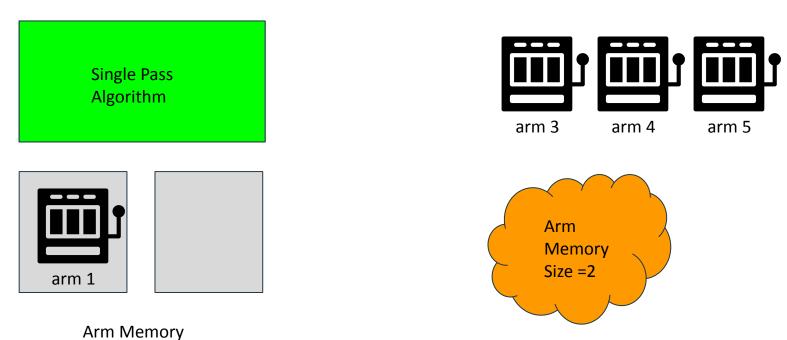
Image source: slot machine by Deemak Daksina from the Noun Project

Single Pass Algorithm arm 3 arm 4 arm 5 Arm Memory Size =2 arm 2 arm 1

Arm Memory

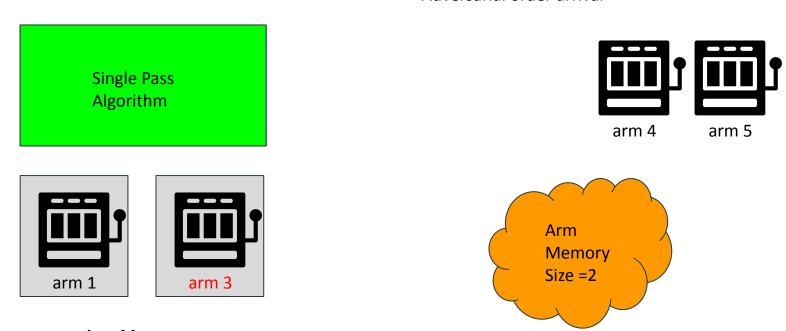
Image source: slot machine by Deemak Daksina from the Noun Project

Adversarial order arrival



Adversarial order arrival

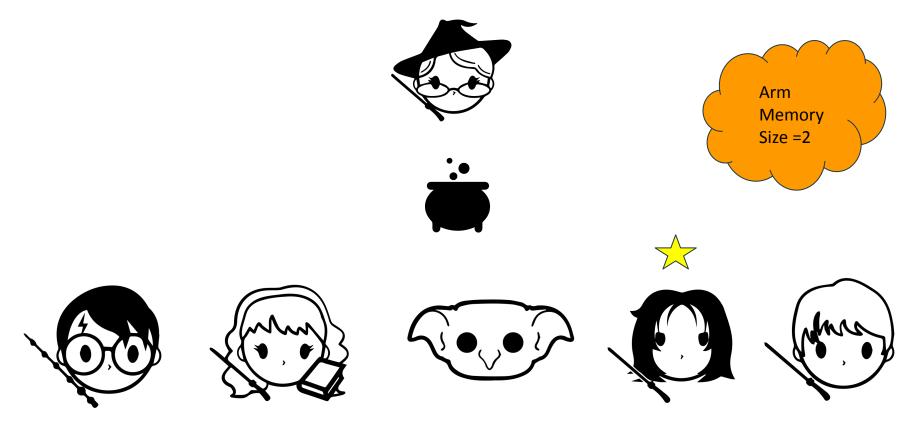
Image source: slot machine by Deemak Daksina from the Noun Project

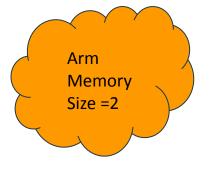


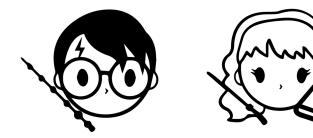
Adversarial order arrival

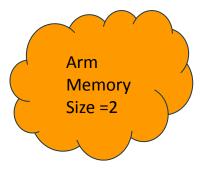
Arm Memory

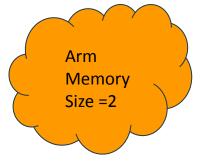
Image source: slot machine by Deemak Daksina from the Noun Project

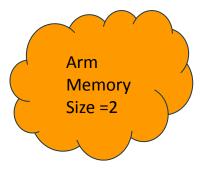


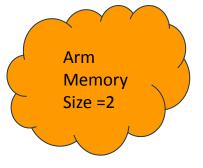


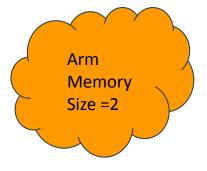




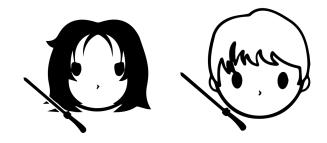


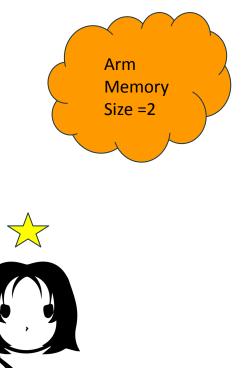












Regret Minimization

Stochastic MAB Instance with expected rewards

$$<\mu_1,\mu_2,\ldots,\mu_n>$$
Let $\mu^*=\max(\mu_1,\ldots,\mu_n)$

Let μ_{i_t} be the mean of the arm sampled in the time step t

Expected Cumulative Regret in T time steps

$$\mathbb{E}[R(T)] = \mu^* \cdot T - \sum_{t=1}^T \mathbb{E}[\mu_{i_t}]$$

Goal: Minimize $\mathbb{E}[R(T)]$

Best-Arm Identification

Stochastic MAB Instance with expected rewards

$$<\mu_1,\mu_2,\ldots,\mu_n>$$

arepsilon-best arm is an arm with mean at least $\,\mu^* - arepsilon\,$

 $(arepsilon,\delta)$ -PAC Algorithm: Finds an $\,arepsilon$ -best arm with probability at least $\,1-\delta$

Goal: (ε, δ) -PAC algorithm such that total number of arm pulls is minimized.

Main Result 1: Any single-pass algorithm will incur at least

$$\Omega\!\left(rac{n^{1/3}T^{2/3}}{m^{7/3}}
ight)$$

expected cumulative regret when m < n .

This lower bound even holds for random order arrival.

Main Result 1: Any single-pass algorithm will incur at least

$$\Omega\!\left(rac{n^{1/3}T^{2/3}}{m^{7/3}}
ight)$$

expected cumulative regret when m < n. This lower bound even holds for random order arrival.

Main Result 2: $(arepsilon,\delta)$ - PAC algorithm with $O(r)\,$ arm memory Optimal ${m r}$ -round sample complexity

Main Result 1: Any single-pass algorithm will incur at least

$$\Omegaigg(rac{n^{1/3}T^{2/3}}{m^{7/3}}igg)$$

expected cumulative regret when $\, m < n$.

This lower bound even holds for random order arrival.

$$O\left(\frac{n}{\varepsilon^2}\left(\texttt{ilog}^{(\texttt{r})}\left(n\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

Main Result 2: $(arepsilon,\delta)$ - PAC algorithm with

 $O(r)\,$ arm memory

Optimal $\boldsymbol{\gamma}$ -round sample complexity \blacktriangleleft

Main Result 1: Any single-pass algorithm will incur at least

$$\Omegaigg(rac{n^{1/3}T^{2/3}}{m^{7/3}}igg)$$

expected cumulative regret when $\,m < n$.

This lower bound even holds for random order arrival.

$$O\left(\frac{n}{\varepsilon^2}\left(\texttt{ilog}^{(\texttt{r})}\left(n\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

Main Result 2: $(arepsilon,\delta)$ - PAC algorithm with

 $O(r)\,\,{
m arm\,\,memory}$

Optimal r-round sample complexity \prec

Corollary: (ε, δ) - PAC algorithm with $O(\log^* n)$ arm memory with optimal

worst-case sample complexity

Input Instance 1

1/2+ε

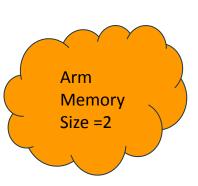
1/2

Means of the arms are specified below it

Input Instance 2

Input Instance 3

1/2

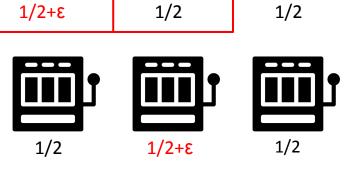


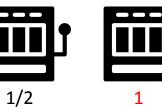
1/2

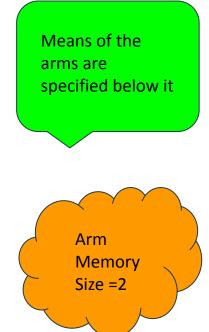
Input Instance 1

Input Instance 2

Input Instance 3







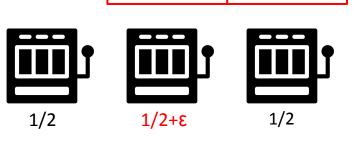
1/2+ε

1/2

Input Instance 1

Input Instance 2

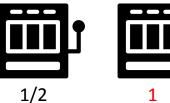
Input Instance 3

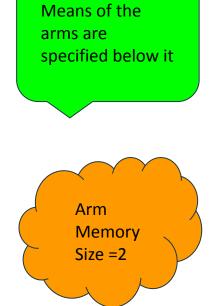


1/2

1/2

1

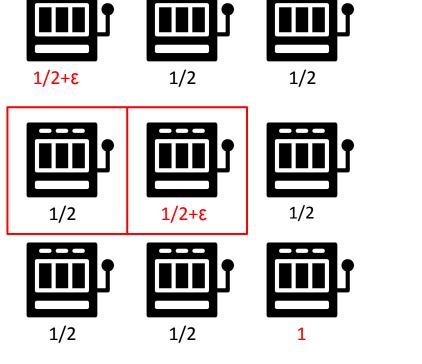


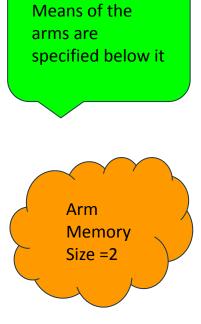


Input Instance 1

Input Instance 2

Input Instance 3



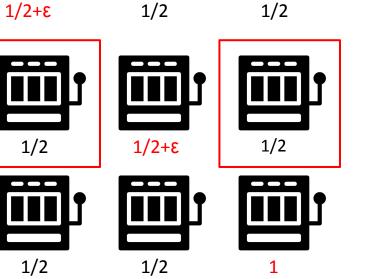


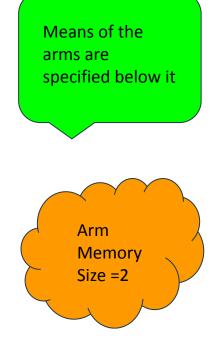
Input Instance 1

1/2+8

Input Instance 2

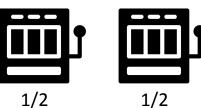
Input Instance 3





Input Instance 1

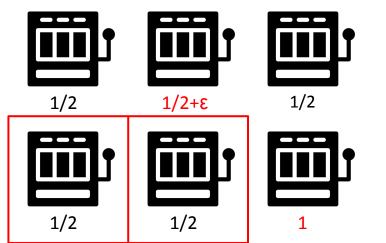
1/2+ε

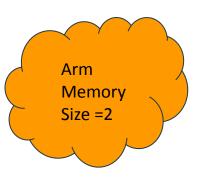


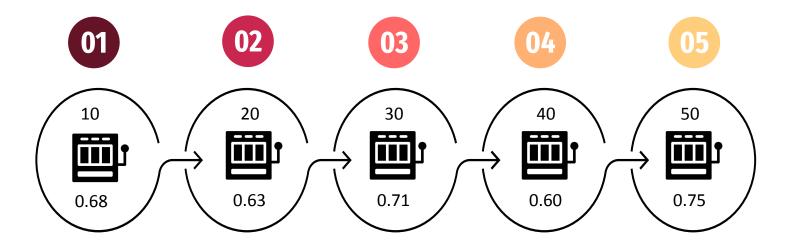
Means of the arms are specified below it

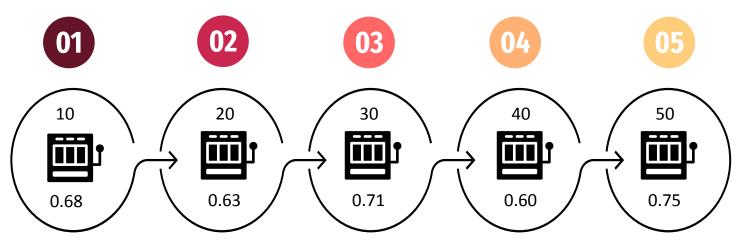
Input Instance 2

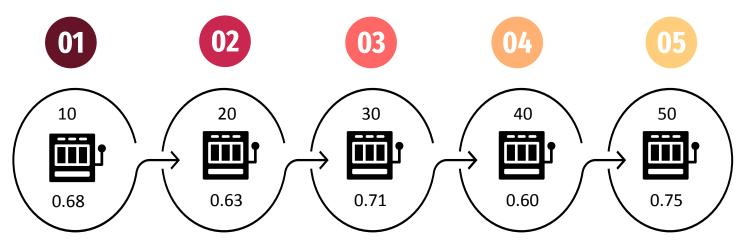
Input Instance 3



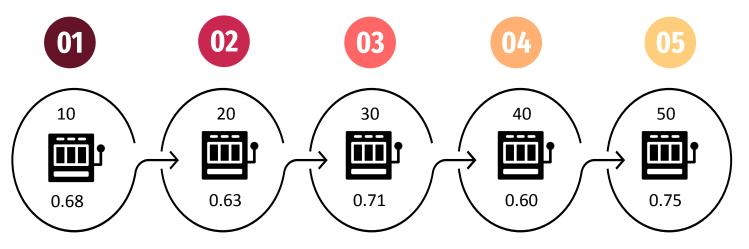




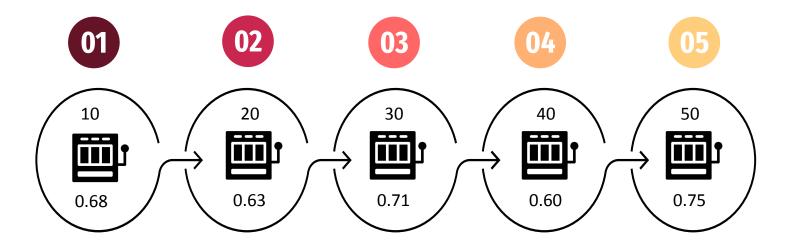


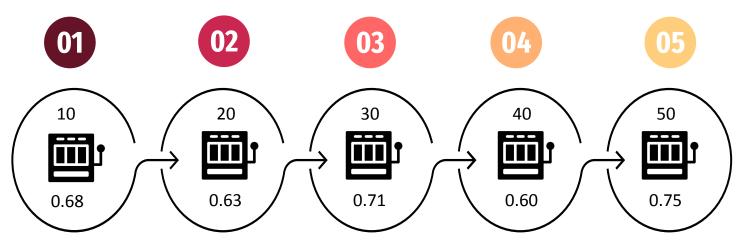


Sample for s1 times

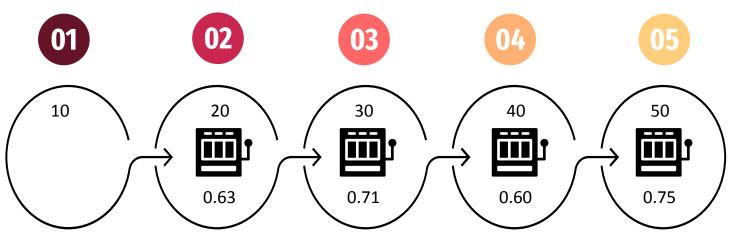


0.58

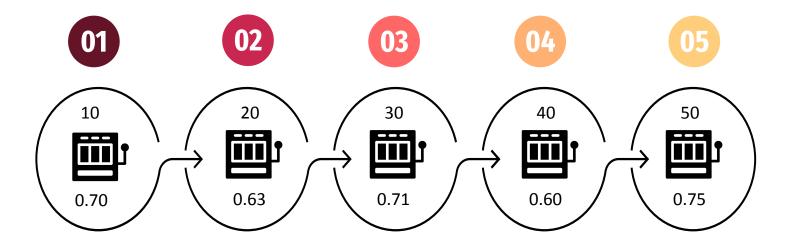


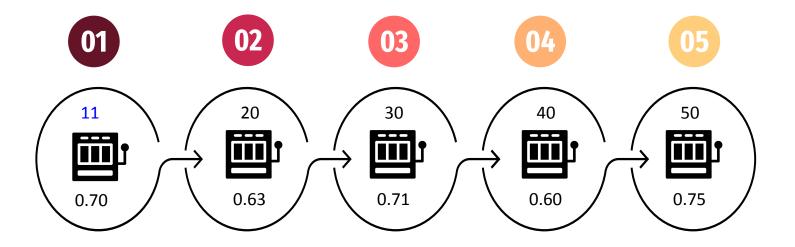


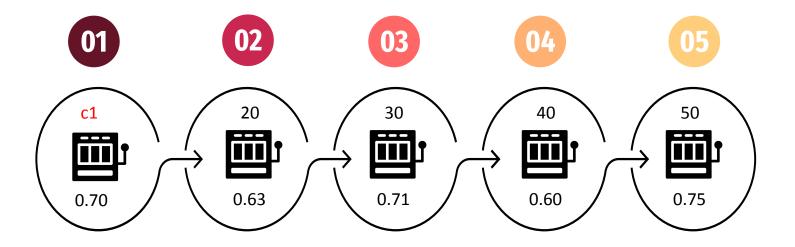
0.70

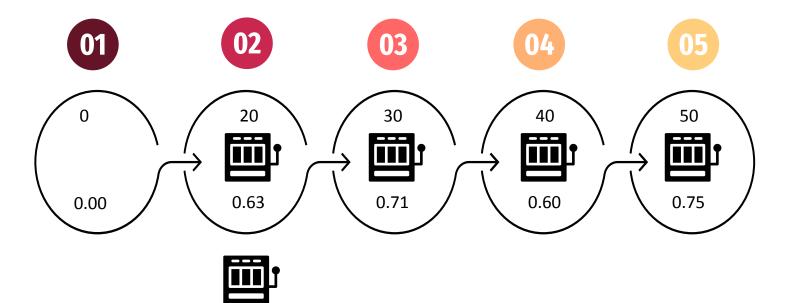


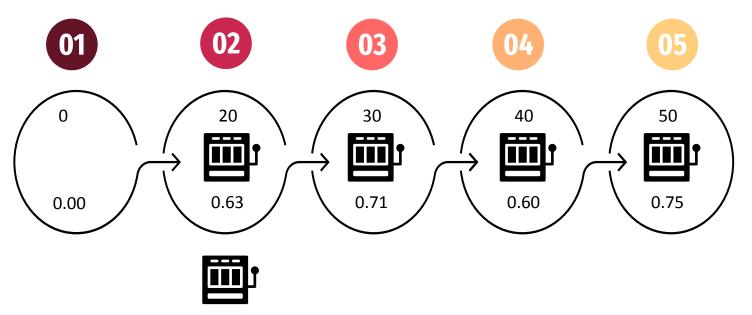
0.70



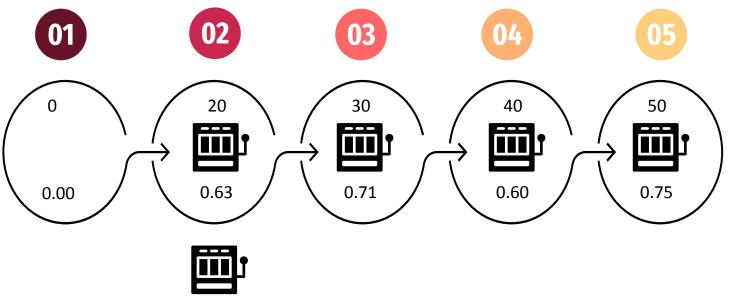




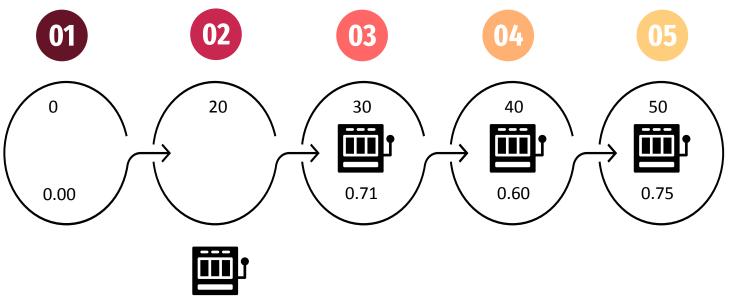




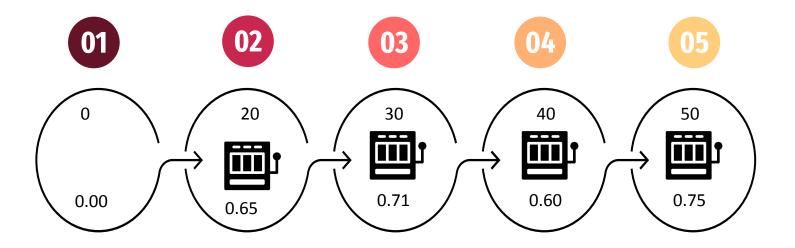
Sample for s2 times

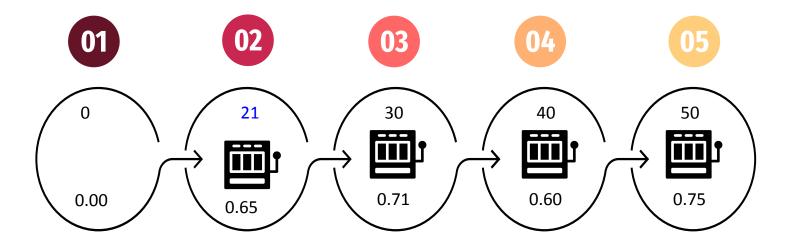


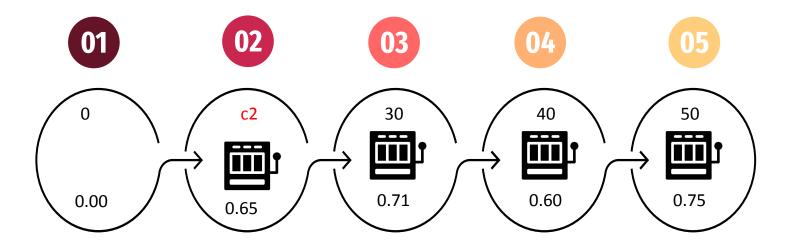
0.65

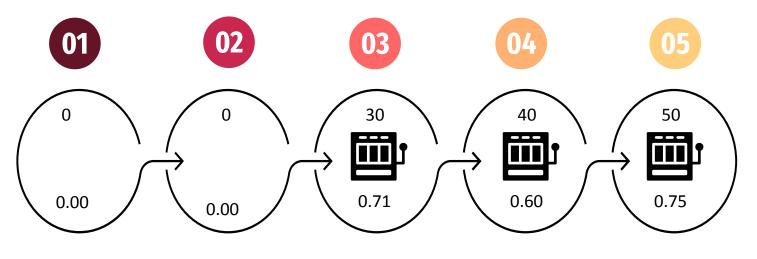


0.65

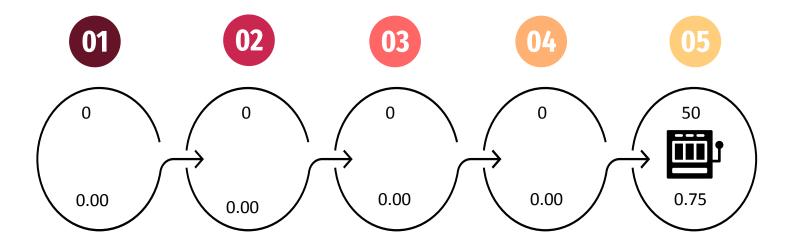








				•



Summary

Main Result 1: Any single-pass algorithm will incur at least

$$\Omegaigg(rac{n^{1/3}T^{2/3}}{m^{7/3}}igg)$$

expected cumulative regret when $\,m < n$.

This lower bound even holds for random order arrival.

$$O\left(\frac{n}{\varepsilon^2}\left(\texttt{ilog}^{(\texttt{r})}\left(n\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

Main Result 2: $(arepsilon,\delta)$ - PAC algorithm with

 $O(r)\,\,{
m arm\,\,memory}$

Optimal r-round sample complexity \prec

Corollary: (ε, δ) - PAC algorithm with $O(\log^* n)$ arm memory with optimal

worst-case sample complexity

Open Problems

1) Obtain instance-dependent lower bounds and upper bounds on the expected cumulative regret for single-pass MAB algorithms with bounded arm-memory.

2) Obtain lower bounds and upper bounds on the expected cumulative regret for k-pass MAB algorithms with bounded arm-memory where k>1.

3) Obtain an (ε, δ) -PAC streaming algorithm with O(1) arm memory and optimal worst case sample complexity.

Open Problems

1) Obtain instance-dependent lower bounds and upper bounds on the expected cumulative regret for single-pass MAB algorithms with bounded arm-memory.

2) Obtain lower bounds and upper bounds on the expected cumulative regret for k-pass MAB algorithms with bounded arm-memory where k>1.

3) Obtain an (ε, δ) -PAC streaming algorithm with O(1) arm memory and optimal worst case sample complexity.

Thank You

Multi-Armed Bandits with Bounded Arm-Memory: Near-Optimal Guarantees for Best-Arm Identification and Regret Minimization