On UMAP's true loss function

Sebastian Damrich

Fred Hamprecht

HCI/IWR at Heidelberg University

Heidelberg Collaboratory

for Image Processing

On UMAP's true loss function

Sebastian Damrich

NeurIPS 2021

30 sec summary

- I Closed form formula for UMAP's true loss function.
- 2 Drastically reduced repulsion strength.
- **3** Explains why UMAP tends to over-contract embeddings.
- Theoretically shows that the sophisticated UMAP weights have no benefit.
- 5 This effect increases with the dataset size.

Dimension Reduction

Given $x_1, \ldots, x_n \in \mathbb{R}^D$ find layout $e_1, \ldots, e_n \in \mathbb{R}^d$ with $d \ll D$.

Figure 1: Dimension reduction of the vectorized, unlabelled MNIST dataset

UMAP artifacts

UMAP tends to produce crisp structures even if there is variation.

Figure 2: Gene expression data of 86024 cells of C.elegans [1-2].

Picture from https://en.wikipedia.org/wiki/Caenorhabditis_elegans#/media/File: Adult_Caenorhabditis_elegans.jpg

On UMAP's true loss function

Sebastian Damrich

UMAP artifacts

Over-contraction even if no dimension reduction necessary.

Figure 3: 3a 1000 points from a 2D ring. 3b 2D UMAP embedding.

On UMAP's true loss function

Sebastian Damrich

UMAP artifacts

The larger the dataset the stronger the over-contraction.

Figure 4: 4a Five 2D rings with 1000 points. 4b 2D UMAP embedding.

On UMAP's true loss function

Sebastian Damrich

- **1** k nearest neighbour graph of input data.
- **2** Input similarities $\mu_{ij} \in [0, 1]$, non-zero only on kNN graph; embedding similarities $\nu_{ij} = \nu(||e_i e_j||)$.
- **3** Loss function

$$\mathcal{L}(\{e_i\}) = -2 \sum_{1 \le i < j \le n} \mu_{ij} \log(\nu_{ij}) + (1 - \mu_{ij}) \log(1 - \nu_{ij}).$$

 \Rightarrow Minimum at $\nu_{ij} = \mu_{ij}$.

4 Optimization via negative sampling [4].

- **1** k nearest neighbour graph of input data.
- **2** Input similarities $\mu_{ij} \in [0, 1]$, non-zero only on *k*NN graph; embedding similarities $\nu_{ij} = \nu(||e_i e_j||)$.
- **3** Loss function

$$\mathcal{L}(\{e_i\}) = -2 \sum_{1 \le i < j \le n} \mu_{ij} \log(\nu_{ij}) + (1 - \mu_{ij}) \log(1 - \nu_{ij}).$$

 \Rightarrow Minimum at $\nu_{ij} = \mu_{ij}$.

4 Optimization via negative sampling [4].

- 1 k nearest neighbour graph of input data.
- **2** Input similarities $\mu_{ij} \in [0, 1]$, non-zero only on kNN graph; embedding similarities $\nu_{ij} = \nu(||e_i e_j||)$.
- **3** Loss function

$$\mathcal{L}(\{e_i\}) = -2 \sum_{1 \le i < j \le n} \mu_{ij} \log(\nu_{ij}) + (1 - \mu_{ij}) \log(1 - \nu_{ij}).$$

 \Rightarrow Minimum at $\nu_{ij} = \mu_{ij}$.

4 Optimization via negative sampling [4].
 ⇒ This changes the loss function! [5]

On UMAP's true loss function

Sebastian Damrich

- **1** k nearest neighbour graph of input data.
- **2** Input similarities $\mu_{ij} \in [0, 1]$, non-zero only on kNN graph; embedding similarities $\nu_{ij} = \nu(||e_i e_j||)$.
- 3 Loss function

$$\mathcal{L}(\{e_i\}) = -2 \sum_{1 \le i < j \le n} \mu_{ij} \log(\nu_{ij}) + (1 - \mu_{ij}) \log(1 - \nu_{ij}).$$

 \Rightarrow Minimum at $\nu_{ij} = \mu_{ij}$.

On UMAP's true loss function

Sebastian Damrich

NeurIPS 2021

UMAP's true loss function

Theorem

The expected loss of UMAP's optimization procedure is

$$ilde{\mathcal{L}} = -2\sum_{1\leq i < j \leq n} \mu_{ij} \cdot \log(
u_{ij}) + \ rac{(d_i+d_j)m}{2n} \ \cdot \log(1-
u_{ij})$$

with $d_i = \sum_{j=1}^n \mu_{ij}$ and m the number of negative samples.

On UMAP's true loss function

Sebastian Damrich

UMAP's true loss function

Theorem

The expected loss of UMAP's optimization procedure is

$$ilde{\mathcal{L}} = -2\sum_{1\leq i < j \leq n} \mu_{ij} \cdot \log(
u_{ij}) + \left| rac{(d_i+d_j)m}{2n} \cdot \log(1-
u_{ij})
ight|$$

with $d_i = \sum_{j=1}^n \mu_{ij}$ and m the number of negative samples.

 \Rightarrow Dramatically reduced repulsion as $1 - \mu_{ij} = 1$ for most *ij*.

On UMAP's true loss function

Sebastian Damrich

Difference between the loss functions

Figure 5: Loss functions for the UMAP optimization on the C.elegans dataset.

\Rightarrow UMAP does not optimize its own loss function!

On UMAP's true loss function

Sebastian Damrich

NeurIPS 2021

Target similarities

Optimal embedding similarity of true loss function is binarized μ_{ij} .

$$\nu_{ij}^* = \frac{\mu_{ij}}{\mu_{ij} + \frac{(d_i + d_j)m}{2n}} \begin{cases} = 0 \text{ if } \mu_{ij} = 0 \\ \approx 1 \text{ if } \mu_{ij} > 0. \end{cases}$$

Figure 6: Since positive target similarities are close to one, UMAP embeddings tend to be over-contracted. For more details see Figure 3.

On UMAP's true loss function

Sebastian Damrich

NeurIPS 2021

Dependence on dataset size

Binarization is stronger for larger dataset size n.

Figure 7: The presence of additional rings decreases the repulsion further which leads to stronger over-contraction. For more details see caption of Figure 4.

On UMAP's true loss function

Sebastian Damrich

NeurIPS 2021

Perturbed input similarities

Binarization renders exact value of input similarities unimportant.

Figure 8: UMAP visualizations of the C.elegans dataset are robust to severe perturbations of the input similarities.

On UMAP's true loss function

Sebastian Damrich

Summary

- UMAP's sampling based optimization reduces repulsion.
- Input similarities are unimportant as they get binarized; only the kNN graph matters.
- This explains over-contraction artifacts.
- More faithful interpretation of UMAP plots in various domains.

References

[1] J. S. Packer, Q. Zhu, C. Huynh, P. Sivaramakrishnan, E. Preston, H. Dueck, D. Stefanik, K. Tan,C. Trapnell, J. Kim, et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science, 365(6459), 2019

[2] A. Narayan, B. Berger, and H. Cho. Assessing single-cell transcriptomic variability through density-preserving data visualization. Nature Biotechnology, pages 1–10, 2021

[3] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426., 2018

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119), 2013

[5] J. N. Böhm, P. Berens, and D. Kobak. A unifying perspective on neighbor embeddings along the attraction-repulsion spectrum. arXiv preprint arXiv:2007.08902., 2020

On UMAP's true loss function

Sebastian Damrich

Thank you and see you during the poster session!