Linear Convergence of Gradient Methods for Estimating Structured Transition Matrices in High-dimensional Vector Autoregressive Models

Xiao Lv¹ Wei Cui¹ Yulong Liu²

¹School of Information and Electronics Beijing Institute of Technology

²School of Physics Beijing Institute of Technology

December, 2021

Outline

1. Motivation

- 1.1. Why Time Series?
- 1.2. How to Model Time Series? Vector Autoregressive Models
- 1.3. Vector Autoregressive Models in High-dimensional Regime
- 1.4. Related Work and Our Contribution

2. Main Results

- 2.1. Single-structured Transition Matrices
- 2.2. Superposition-structured Transition Matrices

3. Numerical Results

- 3.1. Network Learning with a Sparse Transition Matrix
- 3.2. Network Learning with a Low-rank Transition Matrix
- 3.3. Network Learning with a Superposition-structured Transition Matrix
- 3.4. Granger Causal Effects among Log-returns of Stocks in S&P 500 Index
- 3.5. Background Modeling

• Diverse applications in forecasting, clustering, signal detecting, etc.

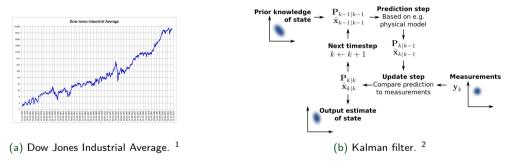


Figure: Applications of time series.

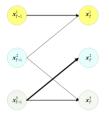
¹Source: https://commons.wikimedia.org/wiki/File:Dow_Jones_Industrial_Average.png. ²Source: https://commons.wikimedia.org/wiki/File:Basic_concept_of_Kalman_filtering.svg.

X.Lv, W.Cui, Y.Liu (Beijing Institute of Technology) Linear convergence for estimating structured transition matrices in VAR models December, 2021 3|26

How to Model Time Series? Vector Autoregressive Models

• Capture the relationship between multiple time-varying quantities.

$$\boldsymbol{x}_{t+1} = \boldsymbol{\Gamma}_{\star}^T \boldsymbol{x}_t + \boldsymbol{e}_{t+1}, \quad \boldsymbol{e}_t \stackrel{iid}{\sim} \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_e), \quad t = 0, \cdots, n-1.$$



T-1 T

Transform into the matrix form

$$Y = X\Gamma_{\star} + E,$$

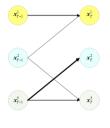
where $Y = [x_1, \cdots, x_n]^T$, $X = [x_0, \cdots, x_{n-1}]^T$, and $E = [e_1, \cdots, e_n]^T$. • Goal of VAR models: estimate the transition matrix Γ_{\star} .

X.Lv, W.Cui, Y.Liu (Beijing Institute of Technology) Linear convergence for estimating structured transition matrices in VAR models December, 2021 4|26

How to Model Time Series? Vector Autoregressive Models

• Capture the relationship between multiple time-varying quantities.

$$\boldsymbol{x}_{t+1} = \boldsymbol{\Gamma}_{\star}^T \boldsymbol{x}_t + \boldsymbol{e}_{t+1}, \quad \boldsymbol{e}_t \stackrel{iid}{\sim} \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_e), \quad t = 0, \cdots, n-1.$$



T-1 T

• Transform into the matrix form

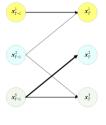
$$Y = X\Gamma_{\star} + E,$$

where
$$\boldsymbol{Y} = [\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n]^T$$
, $\boldsymbol{X} = [\boldsymbol{x}_0, \cdots, \boldsymbol{x}_{n-1}]^T$, and $\boldsymbol{E} = [\boldsymbol{e}_1, \cdots, \boldsymbol{e}_n]^T$.
Goal of VAR models: estimate the transition matrix Γ_* .

How to Model Time Series? Vector Autoregressive Models

• Capture the relationship between multiple time-varying quantities.

$$\boldsymbol{x}_{t+1} = \boldsymbol{\Gamma}_{\star}^T \boldsymbol{x}_t + \boldsymbol{e}_{t+1}, \quad \boldsymbol{e}_t \stackrel{iid}{\sim} \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_e), \quad t = 0, \cdots, n-1.$$



T-1 T

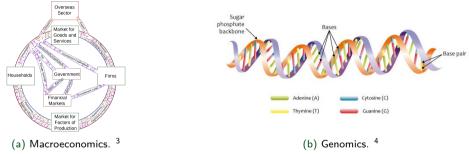
• Transform into the matrix form

$$Y = X\Gamma_{\star} + E,$$

where $\boldsymbol{Y} = [\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n]^T$, $\boldsymbol{X} = [\boldsymbol{x}_0, \cdots, \boldsymbol{x}_{n-1}]^T$, and $\boldsymbol{E} = [\boldsymbol{e}_1, \cdots, \boldsymbol{e}_n]^T$. • Goal of VAR models: estimate the transition matrix $\boldsymbol{\Gamma}_{\star}$.

Vector Autoregressive Models in High-dimensional Regime

• VAR models in high-dimensional regime: macroeconomics, genomics, etc.



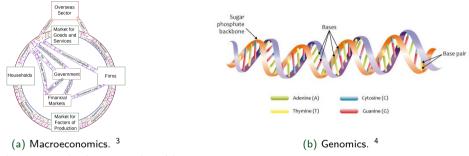
- Challenge: underdetermined problem.
- Solution: impose structure priors, such as sparsity, group-sparsity and low rank.

³Source: https://commons.wikimedia.org/wiki/File:CircularFlowEN-SVG.svg ⁴Source: https://commons.wikimedia.org/wiki/File:DNA_double_helix_(13081113544).jpg

X.Lv, W.Cui, Y.Liu (Beijing Institute of Technology) Linear convergence for estimating structured transition matrices in VAR models December, 2021 5 | 26

Vector Autoregressive Models in High-dimensional Regime

• VAR models in high-dimensional regime: macroeconomics, genomics, etc.



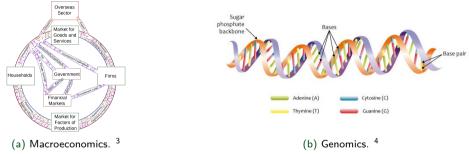
- Challenge: underdetermined problem.
- Solution: impose structure priors, such as sparsity, group-sparsity and low rank.

X.Lv, W.Cui, Y.Liu (Beijing Institute of Technology) Linear convergence for estimating structured transition matrices in VAR models December, 2021 5|26

³Source: https://commons.wikimedia.org/wiki/File:CircularFlowEN-SVG.svg ⁴Source: https://commons.wikimedia.org/wiki/File:DNA_double_helix_(13081113544).jpg

Vector Autoregressive Models in High-dimensional Regime

• VAR models in high-dimensional regime: macroeconomics, genomics, etc.



- Challenge: underdetermined problem.
- Solution: impose structure priors, such as sparsity, group-sparsity and low rank.

 $[\]label{eq:source:https://commons.wikimedia.org/wiki/File:CircularFlowEN-SVG.svg \\ \end{tabular} 4 Source: https://commons.wikimedia.org/wiki/File:DNA_double_helix_(13081113544).jpg \\ \end{tabular}$

• Theory in low-dimensional settings is well established in (Lütkepohl, 2005).

- Several literature about the **statistical analysis** in high-dimensional settings (Loh and Wainwright, 2012; Han and Liu, 2013; Basu and Michailidis, 2015; Melnyk and Banerjee, 2016; Basu et al., 2019).
- Other important questions:
 - Few literature from the **algorithmic view** in high-dimensional settings.
 - Single-structured assumption for parameters might be too simple in real applications.

- Provide the non-asymptotic optimization guarantee for VAR models.
- Consider both single-structured and superposition-structured transition matrices.

- Theory in low-dimensional settings is well established in (Lütkepohl, 2005).
- Several literature about the statistical analysis in high-dimensional settings (Loh and Wainwright, 2012; Han and Liu, 2013; Basu and Michailidis, 2015; Melnyk and Banerjee, 2016; Basu et al., 2019).
- Other important questions:
 - Few literature from the **algorithmic view** in high-dimensional settings.
 - Single-structured assumption for parameters might be too simple in real applications.

- Provide the non-asymptotic optimization guarantee for VAR models.
- Consider both single-structured and superposition-structured transition matrices.

- Theory in low-dimensional settings is well established in (Lütkepohl, 2005).
- Several literature about the statistical analysis in high-dimensional settings (Loh and Wainwright, 2012; Han and Liu, 2013; Basu and Michailidis, 2015; Melnyk and Banerjee, 2016; Basu et al., 2019).
- Other important questions:
 - Few literature from the **algorithmic view** in high-dimensional settings.
 - Single-structured assumption for parameters might be too simple in real applications.

- Provide the non-asymptotic optimization guarantee for VAR models.
- Consider both single-structured and superposition-structured transition matrices.

- Theory in low-dimensional settings is well established in (Lütkepohl, 2005).
- Several literature about the statistical analysis in high-dimensional settings (Loh and Wainwright, 2012; Han and Liu, 2013; Basu and Michailidis, 2015; Melnyk and Banerjee, 2016; Basu et al., 2019).
- Other important questions:
 - Few literature from the **algorithmic view** in high-dimensional settings.
 - Single-structured assumption for parameters might be too simple in real applications.

- Provide the non-asymptotic optimization guarantee for VAR models.
- Consider both single-structured and superposition-structured transition matrices.

- Theory in low-dimensional settings is well established in (Lütkepohl, 2005).
- Several literature about the statistical analysis in high-dimensional settings (Loh and Wainwright, 2012; Han and Liu, 2013; Basu and Michailidis, 2015; Melnyk and Banerjee, 2016; Basu et al., 2019).
- Other important questions:
 - Few literature from the **algorithmic view** in high-dimensional settings.
 - Single-structured assumption for parameters might be too simple in real applications.

- Provide the non-asymptotic optimization guarantee for VAR models.
- Consider both single-structured and superposition-structured transition matrices.

- Theory in low-dimensional settings is well established in (Lütkepohl, 2005).
- Several literature about the statistical analysis in high-dimensional settings (Loh and Wainwright, 2012; Han and Liu, 2013; Basu and Michailidis, 2015; Melnyk and Banerjee, 2016; Basu et al., 2019).
- Other important questions:
 - Few literature from the **algorithmic view** in high-dimensional settings.
 - Single-structured assumption for parameters might be too simple in real applications.

- Provide the non-asymptotic optimization guarantee for VAR models.
- Consider both single-structured and superposition-structured transition matrices.

Outline

1. Motivation

- 1.1. Why Time Series?
- 1.2. How to Model Time Series? Vector Autoregressive Models
- 1.3. Vector Autoregressive Models in High-dimensional Regime
- 1.4. Related Work and Our Contribution

2. Main Results

- 2.1. Single-structured Transition Matrices
- 2.2. Superposition-structured Transition Matrices

3. Numerical Results

- 3.1. Network Learning with a Sparse Transition Matrix
- 3.2. Network Learning with a Low-rank Transition Matrix
- 3.3. Network Learning with a Superposition-structured Transition Matrix
- 3.4. Granger Causal Effects among Log-returns of Stocks in S&P 500 Index
- 3.5. Background Modeling

Single-structured Transition Matrices

• Promote the structure of Γ_{\star} by a convex regularizer $\mathcal{R}(\cdot).$

Constrained least square problem for VAR models with single-structured transition matrices

$$\min_{\mathbf{\Gamma}} \quad \frac{1}{2n} \| \mathbf{Y} - \mathbf{X} \mathbf{\Gamma} \|_{\mathrm{F}}^{2}$$

s.t. $\mathcal{R}(\mathbf{\Gamma}) \leq \mathcal{R}(\mathbf{\Gamma}_{\star}).$

• Optimize through projected gradient descent (PGD).

Algorithm 1 PGD for single-structured transition matrices estimation

Input: Initial point Γ_0 , step size μ , iteration number K. for k = 0 to K - 1 do $\Gamma_{k+1} = \mathcal{P}_{\mathcal{K}}(\Gamma_k - \mu \nabla f_n(\Gamma_k))$ end for Output: Γ_K

Here, $\mathcal{K} = \{ \Gamma \mid \mathcal{R}(\Gamma) \leq \mathcal{R}(\Gamma_{\star}) \}$ is the descent set.

Two Assumptions

Stability (Basu and Michailidis, 2015)

The characteristic polynomial of the VAR model satisfies $\det(\mathcal{A}(z)) \neq 0$ on the unit circle of the complex plane $\{z \in \mathbb{C} : |z| = 1\}$, where $\mathcal{A}(z) = \mathbf{I}_{d \times d} - \mathbf{\Gamma}_{\star}^T z$.

Boundness

Suppose there are positive constants κ_{\min} and κ_{\max} satisfying

$$0 < \frac{\kappa_{\min}}{2\pi} \le \underset{\theta \in [-\pi,\pi]}{\operatorname{ess\,inf}} \lambda_{\min}(f_x(\theta)) \le \underset{\theta \in [-\pi,\pi]}{\operatorname{ess\,sup}} \lambda_{\max}(f_x(\theta)) \le \frac{\kappa_{\max}}{2\pi}.$$

where $f_x(\theta)$ is the spectral density function defined as (Basu and Michailidis, 2015)

$$f_x(\theta) \coloneqq \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} \Sigma_x(l) e^{-il\theta}, \qquad \theta \in [-\pi, \pi].$$

Here we use $\Sigma_x(l) = \mathbb{E}[\boldsymbol{x}_t \boldsymbol{x}_{t+l}^T], \ t, l \in \mathbb{Z}.$

Two Assumptions

Stability (Basu and Michailidis, 2015)

The characteristic polynomial of the VAR model satisfies $det(\mathcal{A}(z)) \neq 0$ on the unit circle of the complex plane $\{z \in \mathbb{C} : |z| = 1\}$, where $\mathcal{A}(z) = \mathbf{I}_{d \times d} - \mathbf{\Gamma}_{\star}^T z$.

Boundness

Suppose there are positive constants κ_{\min} and κ_{\max} satisfying

$$0 < \frac{\kappa_{\min}}{2\pi} \le \operatorname{ess\,inf}_{\theta \in [-\pi,\pi]} \lambda_{\min}(f_x(\theta)) \le \operatorname{ess\,sup}_{\theta \in [-\pi,\pi]} \lambda_{\max}(f_x(\theta)) \le \frac{\kappa_{\max}}{2\pi}.$$

where $f_x(\theta)$ is the spectral density function defined as (Basu and Michailidis, 2015)

$$f_x(\theta) \coloneqq \frac{1}{2\pi} \sum_{l=-\infty}^{\infty} \boldsymbol{\Sigma}_x(l) e^{-il\theta}, \qquad \theta \in [-\pi, \pi].$$

Here we use $\boldsymbol{\varSigma}_x(l) = \mathbb{E}[\boldsymbol{x}_t \boldsymbol{x}_{t+l}^T], \ t, l \in \mathbb{Z}.$

Starting from a point Γ_0 satisfying $\mathcal{R}(\Gamma_0) \leq \mathcal{R}(\Gamma_*)$, we perform PGD with the step size $\mu = 1/\kappa_{\max}$. If the number of measurements satisfies

$$\sqrt{n} > 2C \frac{\kappa_{\max}}{\kappa_{\min}} (\omega(\mathcal{C} \cap \mathbb{S}_F) + u),$$

$$\|\boldsymbol{\Gamma}_{k+1} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} \leq \rho^{k+1} \|\boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} + \frac{\xi}{1-\rho}.$$

- When ho < 1, PGD would enjoy a **linear** convergence rate.
- The requirement of samples is of order $\omega(\mathcal{C} \cap \mathbb{S}_F)^2$, which is **sharp** up to a constant factor.
- The **temporal dependency** could be characterized by κ_{\min} and κ_{\max} .

Starting from a point Γ_0 satisfying $\mathcal{R}(\Gamma_0) \leq \mathcal{R}(\Gamma_*)$, we perform PGD with the step size $\mu = 1/\kappa_{\max}$. If the number of measurements satisfies

$$\sqrt{n} > 2C \frac{\kappa_{\max}}{\kappa_{\min}} (\omega(\mathcal{C} \cap \mathbb{S}_F) + u),$$

$$\|\boldsymbol{\Gamma}_{k+1} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} \leq \rho^{k+1} \|\boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} + \frac{\xi}{1-\rho}.$$

- When $\rho < 1$, PGD would enjoy a linear convergence rate.
- The requirement of samples is of order $\omega(\mathcal{C} \cap \mathbb{S}_F)^2$, which is sharp up to a constant factor.
- The **temporal dependency** could be characterized by κ_{\min} and κ_{\max} .

Starting from a point Γ_0 satisfying $\mathcal{R}(\Gamma_0) \leq \mathcal{R}(\Gamma_*)$, we perform PGD with the step size $\mu = 1/\kappa_{\max}$. If the number of measurements satisfies

$$\sqrt{n} > 2C \frac{\kappa_{\max}}{\kappa_{\min}} (\omega(\mathcal{C} \cap \mathbb{S}_F) + u),$$

$$\|\boldsymbol{\Gamma}_{k+1} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} \leq \rho^{k+1} \|\boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} + \frac{\xi}{1-\rho}.$$

- When $\rho < 1$, PGD would enjoy a linear convergence rate.
- The requirement of samples is of order $\omega(\mathcal{C} \cap \mathbb{S}_F)^2$, which is sharp up to a constant factor.
- The **temporal dependency** could be characterized by κ_{\min} and κ_{\max} .

Starting from a point Γ_0 satisfying $\mathcal{R}(\Gamma_0) \leq \mathcal{R}(\Gamma_*)$, we perform PGD with the step size $\mu = 1/\kappa_{\max}$. If the number of measurements satisfies

$$\sqrt{n} > 2C \frac{\kappa_{\max}}{\kappa_{\min}} (\omega(\mathcal{C} \cap \mathbb{S}_F) + u),$$

$$\|\boldsymbol{\Gamma}_{k+1} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} \leq \rho^{k+1} \|\boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} + \frac{\xi}{1-\rho}.$$

- When $\rho < 1$, PGD would enjoy a linear convergence rate.
- The requirement of samples is of order $\omega(\mathcal{C} \cap \mathbb{S}_F)^2$, which is sharp up to a constant factor.
- The temporal dependency could be characterized by κ_{\min} and κ_{\max} .

Apply to the case where the rows of X are generated from $x_t \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{\varSigma}_x)$.

Linear convergence of the multi-task learning problem with independent samples

Suppose $\kappa_{\min} \leq \lambda_{\min}(\boldsymbol{\Sigma}_x) \leq \lambda_{\max}(\boldsymbol{\Sigma}_x) \leq \kappa_{\max}$. We adopt PGD with the step size $\mu = 1/\kappa_{\max}$ and a starting point Γ_0 satisfying $\mathcal{R}(\Gamma_0) \leq \mathcal{R}(\Gamma_*)$. If the number of measurements satisfies

$$\sqrt{n} > 2C \frac{\kappa_{\max}}{\kappa_{\min}} (\omega(\mathcal{C} \cap \mathbb{S}_F) + u),$$

then with probability at least $1-c\exp(-u^2)$ the PGD update would obey

$$\|\mathbf{\Gamma}_{k+1} - \mathbf{\Gamma}_{\star}\|_{\mathrm{F}} \le \rho^{k+1} \|\mathbf{\Gamma}_{0} - \mathbf{\Gamma}_{\star}\|_{\mathrm{F}} + \frac{\xi}{1-\rho}.$$

Our results provide unified estimation error bounds for both independent and correlated samples.

Apply to the case where the rows of X are generated from $x_t \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{\varSigma}_x)$.

Linear convergence of the multi-task learning problem with independent samples

Suppose $\kappa_{\min} \leq \lambda_{\min}(\boldsymbol{\Sigma}_x) \leq \lambda_{\max}(\boldsymbol{\Sigma}_x) \leq \kappa_{\max}$. We adopt PGD with the step size $\mu = 1/\kappa_{\max}$ and a starting point Γ_0 satisfying $\mathcal{R}(\Gamma_0) \leq \mathcal{R}(\Gamma_*)$. If the number of measurements satisfies

$$\sqrt{n} > 2C \frac{\kappa_{\max}}{\kappa_{\min}} (\omega(\mathcal{C} \cap \mathbb{S}_F) + u),$$

then with probability at least $1-c\exp(-u^2)$ the PGD update would obey

$$\|\boldsymbol{\Gamma}_{k+1} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} \le \rho^{k+1} \|\boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}_{\star}\|_{\mathrm{F}} + \frac{\xi}{1-\rho}.$$

Our results provide unified estimation error bounds for both independent and correlated samples.

Superposition-structured Transition Matrices

• Suppose $\Gamma_{\star} = S_{\star} + L_{\star}$, whose structure is promoted by two decomposable norms $\mathcal{R}_{S}(\cdot)$, $\mathcal{R}_{L}(\cdot)$.

Constrainted least square problem with superposition-structured transition matrices

$$\min_{\mathbf{S}, \mathbf{L}} \quad f_n(\mathbf{S}, \mathbf{L}) = \frac{1}{2n} \| \mathbf{Y} - \mathbf{X}(\mathbf{S} + \mathbf{L}) \|_{\mathrm{F}}^2$$
s.t. $\mathcal{R}_S(\mathbf{S}) \le \mathcal{R}_S(\mathbf{S}_{\star})$
 $\mathcal{R}_L(\mathbf{L}) \le \mathcal{R}_L(\mathbf{L}_{\star}).$

• Optimize through alternating projected gradient descent (AltPGD).

```
Algorithm 2 AltPGD for superposition-structured transition matrices estimation

Input: Initial points S_0 and L_0, step size \mu, iteration number K.

for k = 0 to K - 1 do

S_{k+1} = \mathcal{P}_{K_S}(S_k - \mu \nabla_S f_n(S_k, L_k))

L_{k+1} = \mathcal{P}_{K_L}(L_k - \mu \nabla_L f_n(S_k, L_k))

end for

Output: S_K and L_K
```

Two Assumptions

Decomposable norm (Negahban et al., 2012)

A regularization function $\mathcal{R}(\cdot)$ is decomposable with respect to a subspace pair $(\mathcal{M}, \overline{\mathcal{M}}^{\perp})$, if

$$\mathcal{R}(\alpha + \beta) = \mathcal{R}(\alpha) + \mathcal{R}(\beta), \quad \forall \alpha \in \mathcal{M}, \ \beta \in \overline{\mathcal{M}}^{\perp}.$$

Guarantee for the separate estimation.

Structural incoherence (Yang and Ravikumar, 2013)

Given the subspace pairs $(\mathcal{M}_{\mathcal{S}}, \overline{\mathcal{M}}_{\mathcal{S}}^{\perp})$ and $(\mathcal{M}_{\mathcal{L}}, \overline{\mathcal{M}}_{\mathcal{L}}^{\perp})$ for the two parameters S_{\star} , L_{\star} . Suppose

$$\max\left\{\bar{\sigma}_{\max}(\mathcal{P}_{\overline{\mathcal{M}}_{S}}\boldsymbol{\Sigma}_{x}\mathcal{P}_{\overline{\mathcal{M}}_{L}}), \bar{\sigma}_{\max}(\mathcal{P}_{\overline{\mathcal{M}}_{S}^{\perp}}\boldsymbol{\Sigma}_{x}\mathcal{P}_{\overline{\mathcal{M}}_{L}}), \\ \bar{\sigma}_{\max}(\mathcal{P}_{\overline{\mathcal{M}}_{S}}\boldsymbol{\Sigma}_{x}\mathcal{P}_{\overline{\mathcal{M}}_{L}^{\perp}}), \bar{\sigma}_{\max}(\mathcal{P}_{\overline{\mathcal{M}}_{S}^{\perp}}\boldsymbol{\Sigma}_{x}\mathcal{P}_{\overline{\mathcal{M}}_{L}^{\perp}})\right\} \leq \frac{\kappa_{\min}}{8}$$

where $\Sigma_x = \Sigma_x(0)$ and $\bar{\sigma}_{\max}(\Sigma) = \sup_{V,U \in \mathbb{S}_F} \langle V, \Sigma U \rangle.$

Two Assumptions

Decomposable norm (Negahban et al., 2012)

A regularization function $\mathcal{R}(\cdot)$ is decomposable with respect to a subspace pair $(\mathcal{M}, \overline{\mathcal{M}}^{\perp})$, if

$$\mathcal{R}(\alpha + \beta) = \mathcal{R}(\alpha) + \mathcal{R}(\beta), \quad \forall \alpha \in \mathcal{M}, \ \beta \in \overline{\mathcal{M}}^{\perp}.$$

Guarantee for the separate estimation.

Structural incoherence (Yang and Ravikumar, 2013)

Given the subspace pairs $(\mathcal{M}_{\mathcal{S}}, \overline{\mathcal{M}}_{\mathcal{S}}^{\perp})$ and $(\mathcal{M}_{\mathcal{L}}, \overline{\mathcal{M}}_{\mathcal{L}}^{\perp})$ for the two parameters S_{\star} , L_{\star} . Suppose

$$\max\left\{\bar{\sigma}_{\max}(\mathcal{P}_{\overline{\mathcal{M}}_{S}}\boldsymbol{\Sigma}_{x}\mathcal{P}_{\overline{\mathcal{M}}_{L}}), \bar{\sigma}_{\max}(\mathcal{P}_{\overline{\mathcal{M}}_{S}^{\perp}}\boldsymbol{\Sigma}_{x}\mathcal{P}_{\overline{\mathcal{M}}_{L}}), \\ \bar{\sigma}_{\max}(\mathcal{P}_{\overline{\mathcal{M}}_{S}}\boldsymbol{\Sigma}_{x}\mathcal{P}_{\overline{\mathcal{M}}_{L}^{\perp}}), \bar{\sigma}_{\max}(\mathcal{P}_{\overline{\mathcal{M}}_{S}^{\perp}}\boldsymbol{\Sigma}_{x}\mathcal{P}_{\overline{\mathcal{M}}_{L}^{\perp}})\right\} \leq \frac{\kappa_{\min}}{8}$$

where $\Sigma_x = \Sigma_x(0)$ and $\bar{\sigma}_{\max}(\Sigma) = \sup_{V, U \in \mathbb{S}_F} \langle V, \Sigma U \rangle.$

Suppose Γ_{\star} is superposition-structured and $\Gamma_{\star} = S_{\star} + L_{\star}$. Starting from points S_0 and L_0 satisfying $\mathcal{R}_S(S_0) \leq \mathcal{R}_S(S_{\star})$ and $\mathcal{R}_L(L_0) \leq \mathcal{R}_L(L_{\star})$, we adopt AltPGD with the step size $\mu = 1/\kappa_{\max}$. If the number of measurements satisfies

$$\sqrt{n} > 4C \frac{\kappa_{\max}}{\kappa_{\min}} (\omega(\mathcal{C}_S \cap \mathbb{S}_F) + \omega(\mathcal{C}_L \cap \mathbb{S}_F) + u),$$

$$\|\boldsymbol{S}_{k+1} - \boldsymbol{S}_{\star}\|_{\mathrm{F}} + \|\boldsymbol{L}_{k+1} - \boldsymbol{L}_{\star}\|_{\mathrm{F}} \leq \rho^{k+1}(\|\boldsymbol{S}_{0} - \boldsymbol{S}_{\star}\|_{\mathrm{F}} + \|\boldsymbol{L}_{0} - \boldsymbol{L}_{\star}\|_{\mathrm{F}}) + \frac{\xi}{1-\rho}.$$

- When $\rho < 1$, AltPGD would enjoy a linear convergence rate.
- The estimation error converges to zero, when the number of samples approaches infinity.

Write the sample matrix from n i.i.d. sample $z_i = u_i + v_i$, $u_i \sim \mathcal{N}(0, L_{\star})$ and $v_i \sim \mathcal{N}(0, S_{\star})$

$$\boldsymbol{Y} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_i \boldsymbol{z}_i^T = \boldsymbol{L}_\star + \boldsymbol{S}_\star + \boldsymbol{E},$$

where $E = \frac{1}{n} \sum_{i=1}^{n} z_i z_i^T - (L_\star + S_\star)$ is a Wishart noise matrix.

Constrained problem for robust PCA

$$\begin{split} \min_{\boldsymbol{S},\boldsymbol{L}} & \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{S} - \boldsymbol{L}\|_{\mathrm{F}}^{2} \\ \text{s.t.} & \|\operatorname{vec}(\boldsymbol{S}^{T})\|_{1} \leq \|\operatorname{vec}(\boldsymbol{S}_{\star}^{T})\|_{1}, \quad \|\boldsymbol{L}\|_{\star} \leq \|\boldsymbol{L}_{\star}\|_{\star}. \end{split}$$

Write the sample matrix from n i.i.d. sample $z_i = u_i + v_i$, $u_i \sim \mathcal{N}(0, L_{\star})$ and $v_i \sim \mathcal{N}(0, S_{\star})$

$$\boldsymbol{Y} = rac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_i \boldsymbol{z}_i^T = \boldsymbol{L}_\star + \boldsymbol{S}_\star + \boldsymbol{E},$$

where $E = \frac{1}{n} \sum_{i=1}^{n} z_i z_i^T - (L_\star + S_\star)$ is a Wishart noise matrix.

Constrained problem for robust PCA

$$\begin{split} \min_{\boldsymbol{S},\boldsymbol{L}} & \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{S} - \boldsymbol{L}\|_{\mathrm{F}}^2 \\ \text{s.t.} & \|\mathsf{vec}(\boldsymbol{S}^T)\|_1 \leq \|\mathsf{vec}(\boldsymbol{S}_\star^T)\|_1, \quad \|\boldsymbol{L}\|_\star \leq \|\boldsymbol{L}_\star\|_\star. \end{split}$$

Linear convergence of AltPGD for robust PCA

Consider the robust PCA model where S_{\star} is a sparse matrix with s_{\star} non-zero entries and L_{\star} is a r_{\star} -rank matrix. We adopt AltPGD with the step size $\mu = 1$ and starting points S_0 and L_0 satisfying $\|\operatorname{vec}(S_0^T)\|_1 \le \|\operatorname{vec}(S_{\star}^T)\|_1$ and $\|L_0\|_{\star} \le \|L_{\star}\|_{\star}$. If the number of measurements satisfies

$$\sqrt{n} > C'(\sqrt{s_\star \log d} + \sqrt{r_\star d} + u),$$

then the update would obey

$$\begin{split} \| \boldsymbol{S}_{k+1} - \boldsymbol{S}_{\star} \|_{\mathrm{F}} + \| \boldsymbol{L}_{k+1} - \boldsymbol{L}_{\star} \|_{\mathrm{F}} \\ & \leq (\frac{1}{4})^{k+1} (\| \boldsymbol{S}_{0} - \boldsymbol{S}_{\star} \|_{\mathrm{F}} + \| \boldsymbol{L}_{0} - \boldsymbol{L}_{\star} \|_{\mathrm{F}}) + \frac{4}{3} C \| \boldsymbol{S}_{\star} + \boldsymbol{L}_{\star} \| \frac{\sqrt{s_{\star} \log d} + \sqrt{r_{\star} d} + u}{\sqrt{n}}, \end{split}$$

with probability at least $1 - c \exp(-u^2)$.

Outline

1. Motivation

- 1.1. Why Time Series?
- 1.2. How to Model Time Series? Vector Autoregressive Models
- 1.3. Vector Autoregressive Models in High-dimensional Regime
- 1.4. Related Work and Our Contribution

2. Main Results

- 2.1. Single-structured Transition Matrices
- 2.2. Superposition-structured Transition Matrices

3. Numerical Results

- 3.1. Network Learning with a Sparse Transition Matrix
- 3.2. Network Learning with a Low-rank Transition Matrix
- 3.3. Network Learning with a Superposition-structured Transition Matrix
- 3.4. Granger Causal Effects among Log-returns of Stocks in S&P 500 Index
- 3.5. Background Modeling

Network Learning with a Sparse Transition Matrix

Use the true positive rate (TPR) and false alarm rate (FAR) as performance metrics.

$$\mathsf{TPR} \coloneqq \frac{\sharp\{\hat{\gamma}_{ij} \neq 0 \text{ and } \gamma_{ij}^{\star} \neq 0\}}{\sharp\{\gamma_{ij}^{\star} \neq 0\}}, \qquad \mathsf{FAR} \coloneqq \frac{\sharp\{\hat{\gamma}_{ij} \neq 0 \text{ and } \gamma_{ij}^{\star} = 0\}}{\sharp\{\gamma_{ij}^{\star} = 0\}}.$$

Table: Performance comparison between PGD and FNSL (Basu et al., 2019) on sparse network learning problems

d = 100	Method	TPR (%)	FAR (%)	EE	Total time (s)
n = 1000	PGD	79.49	11.04	0.476	3.18
	FNSL	73.64	14.19	0.489	75.59
n = 1500	PGD	83.45	8.91	0.396	5.16
	FNSL	78.43	11.62	0.417	140.16
n = 2000	PGD	85.82	7.63	0.350	6.14
	FNSL	81.30	10.07	0.373	183.79

X.Lv, W.Cui, Y.Liu (Beijing Institute of Technology) Linear convergence for estimating structured transition matrices in VAR models December, 2021 18/26

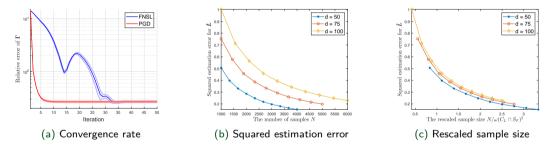


Figure: Convergence results of PGD for low-rank transition matrices estimation.

Network Learning with a Superposition-structured Transition Matrix

Table: Performance comparison between AltPGD and FNSL on estimation of sparse plus low-rank transition matrices

d = 100	Method	TPR (%)	FAR (%)	EE	Total time (s)
n = 1500	AltPGD	78.26	11.70	0.475	19.16
	FNSL	71.18	15.52	0.486	309.76
n = 2000	AltPGD	81.06	10.20	0.421	26.05
	FNSL	74.65	13.65	0.438	436.46
n = 2500	AltPGD	83.19	9.05	0.379	32.27
	FNSL	77.49	12.12	0.399	544.08

Network Learning with a Superposition-structured Transition Matrix

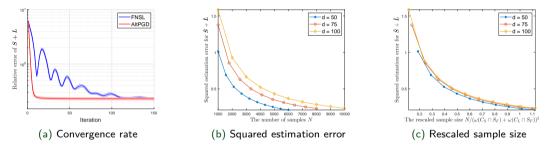
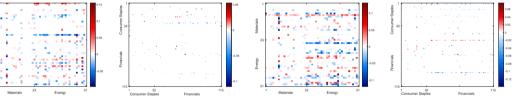


Figure: Convergence results of AltPGD for sparse plus low-rank transition matrices estimation.

Granger Causal Effects among Log-returns of Stocks in S&P 500 Index



(a) Materials sector and energy sector

(b) Consumer staples sector (a) Materials sector and and financials sector

energy sector

(b) Consumer staples sector and financials sector

Figure: Sparsity patterns of the transition matrix $\hat{\Gamma}$ estimated by PGD.

Figure: Sparsity patterns of the transition matrix $\hat{\Gamma}$ estimated by FNSL.

Background Modeling

Reconstruct the static background through a sequence of video frames with moving objects in the foreground (Sobral et al., 2015).

(a) Original input frame

(b) Low-rank frame

Figure: Background modeling in the Highway video.

X.Lv, W.Cui, Y.Liu (Beijing Institute of Technology) Linear convergence for estimating structured transition matrices in VAR models December, 2021 23 | 26

- Basu, S., Li, X., and Michailidis, G. (2019). Low rank and structured modeling of high-dimensional vector autoregressions. *IEEE Transactions on Signal Processing*, 67(5):1207–1222.
- Basu, S. and Michailidis, G. (2015). Regularized estimation in sparse high-dimensional time series models. *The Annals of Statistics*, 43(4):1535–1567.
- Han, F. and Liu, H. (2013). Transition matrix estimation in high dimensional time series. In Dasgupta, S. and McAllester, D., editors, *Proceedings of the 30th International Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pages 172–180, Atlanta, Georgia, USA. PMLR.
- Loh, P.-L. and Wainwright, M. J. (2012). High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity. *The Annals of Statistics*, 40(3):1637–1664.
- Lütkepohl, H. (2005). *New Introduction to Multiple Time Series Analysis*. Springer Berlin Heidelberg.

- Melnyk, I. and Banerjee, A. (2016). Estimating structured vector autoregressive models. In Balcan, M. F. and Weinberger, K. Q., editors, *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pages 830–839, New York, New York, USA. PMLR.
- Negahban, S. N., Ravikumar, P., Wainwright, M. J., Yu, B., et al. (2012). A unified framework for high-dimensional analysis of *m*-estimators with decomposable regularizers. *Statistical Science*, 27(4):538–557.
- Sobral, A., Bouwmans, T., and Zahzah, E.-h. (2015). Lrslibrary: Low-rank and sparse tools for background modeling and subtraction in videos. In *Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing*. CRC Press, Taylor and Francis Group.
- Yang, E. and Ravikumar, P. K. (2013). Dirty statistical models. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, *Advances in Neural Information Processing Systems*, volume 26. Curran Associates, Inc.

Thank you!