

OAK RIDGE National Laboratory

On Stochastic Stability of Deep Markov Models

NeurIPS, December 6-14, 2021

Jan Drgona (PNNL), Sayak Mukherjee (PNNL), Jiaxin Zhang (ORNL), Frank Liu (ORNL), Mahantesh Halappanavar (PNNL)

PNNL is operated by Battelle for the U.S. Department of Energy

Stability Analysis of Deep Markov Models

Motivation

- Safety-critical systems call for formal verification methods to ensure safe operation.
- Properties like stability and robustness are crucial for reliable modeling and control.

Objectives

Sufficient conditions for stochastic stability of deep Markov models (DMMs).

Approaches

Apply system-theoretic analysis methods on DMMs.

n. ol.

Deep Markov Models

$$P(\mathbf{x}_{0:T}, \mathbf{y}_{0:T}) = P(\mathbf{x}_0) P(\mathbf{y}_0 | \mathbf{x}_0) \prod_{0}^{T-1} P(\mathbf{x}_{t+1} | \mathbf{x}_t) P(\mathbf{y}_t | \mathbf{x}_t).$$

$$\mathbf{x}_{t+1} \sim \mathcal{N}(K_{\alpha}(\mathbf{x}_t, \Delta t), L_{\beta}(\mathbf{x}_t, \Delta t))$$
$$\mathbf{y}_t \sim \mathcal{M}(F_{\kappa}(\mathbf{x}_t))$$

$$K_{\alpha}(\mathbf{x}_{t}, \Delta t) = \mathbf{f}_{\theta_{\mathbf{f}}}(\mathbf{x}_{t})$$
$$\operatorname{vec}(L_{\beta}(\mathbf{x}_{t}, \Delta t)) = \mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x}_{t})$$

https://en.wikipedia.org/wiki/Hidden Markov mode

Deep Markov Models:

- Probabilistic graphical model (PGM)
- Generative model of sequential data
- Applications:
 - Economics, finance
 - Pattern recognition
 - Signal processing

Exploring connections between:

- Stability of stochastic systems
- Deep Markov models (DMMs)
- Contraction of DMM transitions
- **Operator norms**
- Banach fixed point theorem

Deep Neural Networks as Piecewise Affine Maps

$$\begin{array}{ll} {\rm DNN} & \psi_{\theta_{\psi}}({\bf x}) = {\bf A}_L^{\psi} {\bf h}_L^{\psi} + {\bf b}_L & {\rm PWA\,map} & \psi_{\theta_{\psi}}({\bf x}) = {\bf A}_{\psi}({\bf x}) \\ & {\bf h}_l^{\psi} = {\boldsymbol v}({\bf A}_{l-1}^{\psi} {\bf h}_{l-1}^{\psi} + {\bf b}_{l-1}) \end{array}$$

PWA activation map
$$\boldsymbol{v}(\mathbf{z}) = \begin{bmatrix} \frac{v(z_1) - v(0)}{z_1} & & \\ & \ddots & \\ & & \frac{v(z_n) - v(0)}{z_n} \end{bmatrix} \mathbf{z} + \begin{bmatrix} v(0) \\ \vdots \\ v(0) \end{bmatrix} =$$

Local linear dynamics of DNN

• At every point \mathbf{x} , DNN can be represented as a product of PWA maps:

$$\mathbf{A}_{\psi}(\mathbf{x})\mathbf{x} = \mathbf{A}_{L}^{\psi} \mathbf{\Lambda}_{\mathbf{z}_{L}}^{\psi} \mathbf{A}_{L-1}^{\psi} \dots \mathbf{\Lambda}_{\mathbf{z}_{1}}^{\psi} \mathbf{A}_{0}^{\psi} \mathbf{x}$$
$$\mathbf{b}_{\psi,i} = \mathbf{A}_{i}^{\psi} \mathbf{\Lambda}_{\mathbf{z}_{i}}^{\psi} \mathbf{b}_{\psi,i-1} + \mathbf{b}_{i}, \ i \in \mathbb{N}_{1}^{L}, \ \mathbf{b}_{\psi,0} = \mathbf{b}_{0}.$$

$(\mathbf{x})\mathbf{x} + \mathbf{b}_{\psi}(\mathbf{x}).$

$\mathbf{\Lambda}^{oldsymbol{\psi}}_{\mathbf{z}}\mathbf{z} + oldsymbol{v}(\mathbf{0})$

Stochastic Stability of Deep Markov Models

Definition 3. The stochastic process $\mathbf{x}_t \in \mathbb{R}^n$ is mean-square stable (MSS) if and only if there exists $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$, such that $\lim_{t \to \infty} \mathbb{E}(\mathbf{x}_t) = \mu$, and $\lim_{t \to \infty} \mathbb{E}(\mathbf{x}_t \mathbf{x}_t^T) = \Sigma$.

Sufficient stability conditions of DMM:

Local Lipschitz constant of DNN:

Contractive weights and activations imply DMM stability:

 $\|\mathbf{A}_{\mathbf{f}}(\mathbf{x})\|_{p} < 1$ $||\mathbf{A}_{\mathbf{g}}(\mathbf{x})||_{p} + \frac{||\mathbf{b}_{\mathbf{g}}(\mathbf{x})||_{p}}{\|\mathbf{x}\|_{p}} < K, K > 0,$ $\forall \mathbf{x} \in Domain(\mathbf{f}_{\theta_{\mathbf{f}}}(\mathbf{x}), \mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x})).$ $\mathcal{K}^{\mathbf{g}}(\mathbf{x}) = ||\mathbf{A}_{\mathbf{g}}(\mathbf{x})||_{p} + \frac{||\mathbf{b}_{\mathbf{g}}(\mathbf{x})||_{p}}{\|\mathbf{x}\|_{p}}.$ $\|\mathbf{A}_{i}^{\mathbf{f}}\|_{p} < 1, \|\mathbf{\Lambda}_{\mathbf{z}_{i}}^{\mathbf{f}}\|_{p} \leq 1 \ i \in \mathbb{N}_{1}^{L_{\mathbf{f}}},$ $\|\mathbf{A}_{j}^{\mathbf{g}}\|_{p} < c^{\mathbf{A}}, \|\mathbf{\Lambda}_{\mathbf{z}_{j}}^{\mathbf{g}}\|_{p} \leq c^{\mathbf{\Lambda}}, j \in \mathbb{N}_{1}^{L_{\mathbf{g}}},$ $\forall \mathbf{x} \in Domain(\mathbf{f}_{\theta_{\mathbf{f}}}(\mathbf{x}), \mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x})).$

5

Pacific

Effect of Biases and Depth on the Stability of **Deep Markov Models**

Figure 2: Left panels show the effect of biases using PF regularization and ReLU activation ((a) w/o bias, (d) w bias). Right panels show the effect of network **f** depths with SVD regularization and ReLU : (b) 1 layer, (c) 2 layers, (e) 4 layers, (f) 8 layers.

Practical Stability Constraints for DNN and DMM

SVD factorization

$$\begin{split} \tilde{\boldsymbol{\Sigma}} &= \operatorname{diag}(\lambda_{\max} - (\lambda_{\max} - \lambda_{\min}) \cdot \boldsymbol{\sigma}(\boldsymbol{\Sigma})) \\ \tilde{\mathbf{A}} &= \mathbf{U} \tilde{\boldsymbol{\Sigma}} \mathbf{V} \end{split}$$

Hamiltonian weight

$$ilde{\mathbf{A}} = egin{bmatrix} \mathbf{0} & \mathbf{A} \ -\mathbf{A}^ op & \mathbf{0} \end{bmatrix}$$

Pytorch implementation: <u>https://github.com/pnnl/slim</u>

Jiong Zhang, et al., Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization, 2018. Eldad Haber and Lars Ruthotto, Stable Architectures for Deep Neural Networks 2017

Parametric Stability Constraints for DMMs

Constrained operator norms of DMMs:

$$\underline{\mathbf{p}}(\mathbf{x}) < \|\mathbf{A}_{\mathbf{f}}(\mathbf{x})\|_p < \|\mathbf{x}\|_p$$

$\overline{\mathbf{p}}(\mathbf{x})$

Conclusion

Stability of Deep Markov Models

- Neural Networks as PWA maps
- Contraction of PWA maps
- Banach fixed point theorem
- Operator norm constraints
- Contraction of DMMs
- Stable Weights
 - Structured linear maps in Pytorch
 - https://pnnl.github.io/slim/
- Contact
 - jan.drgona@pnnl.gov
 - https://www.linkedin.com/in/drgona/
 - <u>https://twitter.com/jan_drgona</u>

40

