An Important Problem

Language Generation: MLE, an imperfect training

 \Rightarrow Exposure Bias

(i.e. mismatch between training and inference)

Discriminators are very accurate:

 \Rightarrow Distinguish between human and machine texts with an accuracy > 90 [4, 3]

Two ways to leverage discriminators:

i) Inference: Cooperative Decoding Reranking genera-

tor's probabilities wrt the discriminator

- [3] used a BeamSearch
- [2] used Nucleus or Top-K Sampling

 \Rightarrow Both decoding suffer from the 'Left To Right Curse'

ii) Training: GANs

Discrete data implies using reinforcement learning (no gradient from the discriminator)

- Reinforcement Learning
- Sparse reward, unstable training

 \Rightarrow Existing language GANs are known to fall short [1]

Contributions

i) Coop-MCTS:

A new cooperative decoding mechanism beyond the left-to-right curse based on Monte Carlo Tree Search (MCTS).

ii) SelfGAN:

A new framework to propagate the discriminator signal in discrete GANs leveraging cooperative decoding mechanisms.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo Staiano ReciTAL & Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Results on Unconditional Generation for samples realized at three different temperatures, in terms of BLEU Vs Self-BLEU (higher better; lower better)

15,9 42,3

- References
- [1] Massimo Caccia et al. "Language GANs Falling Short". In: International Conference on Learning Representations. 2020.
- [2] Yuntian Deng et al. "Residual energy-based models for text generation". In:
- [3] Thomas Scialom et al. "Discriminative Adversarial Search for Abstractive Summarization". In: arXiv preprint arXiv:2002.10375 (2020).
- [4] Rowan Zellers et al. "Defending against neural fake news". In: Advances in Neural Information Processing Systems. 2019, pp. 9051–9062.

Su	mmariz	ation	Base+
1	RL	Base	
,3	40,4	9% 17%	8%
,1	41,9	12%	9%
,5	40,6	20%	12%
,8	40,7	15%	10%
,5	42,0	19%	11%
,6	41,2	16%	10%
,2	41,2	23%	12%
,2	42,5	16%	11%
,4	41,9	18%	13%
,0	42,3	19%	11%
,8	42,8	23%	13%
,0	41,5	14%	11%
,7	40,6	18%	12%
,7	42,6	17%	11%
,4	42,3	23%	13%
,8	41,5	20%	13%
,7	42,8	25%	13%
,8	40,9	23%	12%
,5	42,3	23%	15%

