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Background and Motivation

I Approximating family, divergence measure and
gradient estimators and their interplay play a key role in
variational inference

I The complexity of these interactions is aggravated for high
dimensional posteriors

I These components become even more critical when the
goal is to obtain accurate summaries of the posterior
itself

I The density ratio and its evaluation with MC draws is
the key object of interest
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Background and Motivation
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Figure: Distance from the mode for draws of target and
approximations for different dimensions D = [2,5,10,50].



Dhaka et al.
December 4, 2021

4/11

Background and Motivation

I When the density ratio is heavy-tailed, even unbiased
estimators show a large bias (and large variance) in
practice.

I The density ratio is typically heavy-tailed when the typical
sets of the target and the approximation do not match.

I For commonly used sample size, the Monte Carlo average
is lower than true value with a high probability.

I In higher dimensions, even over-dispersed distributions
miss the typical set producing a highly skewed distribution
over density ratio.
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Conceptual framework

I Most common variational divergences can be expressed
as a function of the density ratio w(θ) = p(θ,Y )/q(θ) as an
f -divergence Df (p‖q) = Eθ∼q

[
f
(

p(θ|Y )
q(θ)

)]
.

I For instance, exclusive KL corresponds to choosing
f = − log(w).

I Reliable BBVI depends on the behavior of w(θ) since
1. accurate optimization requires low-variance and (nearly)

unbiased gradient estimates Ĝ(λ),
2. the quality of variational approximations requires accurate

estimates L̂(λ) of variational divergences.
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Conceptual framework

I The tail distribution of w(θ) is well approximated by a
general Pareto distribution with parameter k .

I b1/kc determines the number of finite moments of the
distribution.

I We can generalize this to the pre-asymptotic behaviour of
the gradient and function estimates Ĝ, L̂.

I Approximating their distributions with a generalized Pareto
k distribution tell us about their convergence issues in the
pre-asymptotic regime.
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Conceptual framework
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Figure: Results for correlated Gaussian targets of dimension
D = 1, . . . ,50 using exclusive or inclusive KL, and Chi2 divergences
as the variational objective.
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Conceptual framework
1. Estimates and gradients of mode-seeking divergences (in

particular exclusive KL divergence with log dependence on
w) have lower variance and are less biased than those of
mass-covering divergences (in particular α-divergences
with α > 0, with polynomial dependence on w).

2. The degree of polynomial dependence on w determines
how rapidly the bias and variance will increase as
approximation accuracy degrades – in particular, in high
dimensions.

3. The k̂ value can be used to diagnose pre-asymptotic
reliability of variational objectives. In particular, the
α-divergence with α > 0 will become unreliable when
max(1, α)× k̂ > 0.7, even if w is bounded (by a very large
constant).
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Experiments on robust regression
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Figure: Maximum dimensionality converged per step size for the
robust regression model.
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Experiments on real world datasets
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Figure: Results for posteriordb experiments. (a) Pareto k̂ values for
BBVI approximations. (b) Relative error of mean and covariance
estimates for BBVI using exclusive KL (circles) and after PSIS
correction (triangles).
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Conclusions

I Pareto k can be used as a reliable diagnostic that indicates
convergence issues/bad approximation.

I Mode-seeking divergences are in practice more stable to
optimize and lead to more reasonable results

I Mass-covering divergences do well in low dimensional
settings, but are too unstable for higher dimensional targets

I PSIS correction improves the estimation of many quantities
of interest, i.e. posterior summaries


