



# **Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs**

Authors: Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian and Chandan K. Reddy Presenter: Nurendra Choudhary



## Outline

- 1. Introduction
- 2. Background
- 3. Our Solution
- 4. Evaluation
- 5. Conclusion

## Introduction

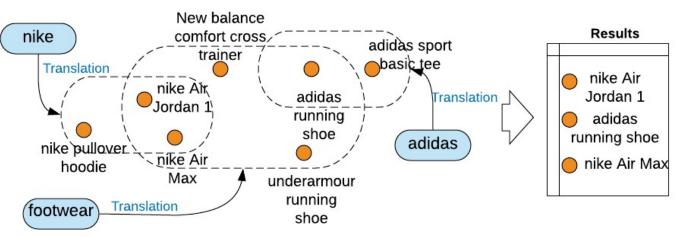
Knowledge Graphs are ubiquitous data structures.

KG querying is computationally expensive due to its size (≈10M nodes with trillions of relations).



01 / Introduction

## Introduction

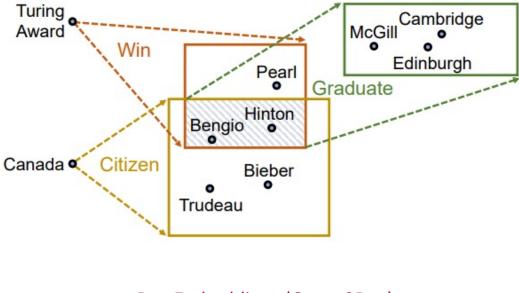

Representation Learning can help!

Learn representations of entities and relations in a latent space.

Apply logical operators to simulate querying behavior.

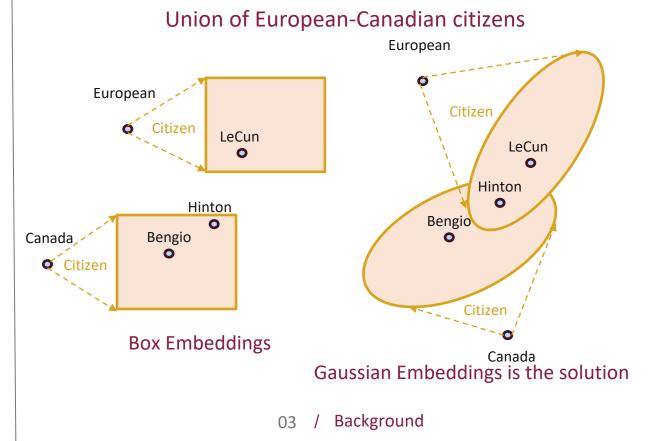
Query: nike and adidas footwear

(nike  $\cap$  footwear)  $\cup$  (adidas  $\cap$  footwear)




02 / Introduction

# Background


# Spatial Representations are better for modelling Knowledge Graphs.

### From which **universities** did the **Canadian Turing Award winners graduate**?

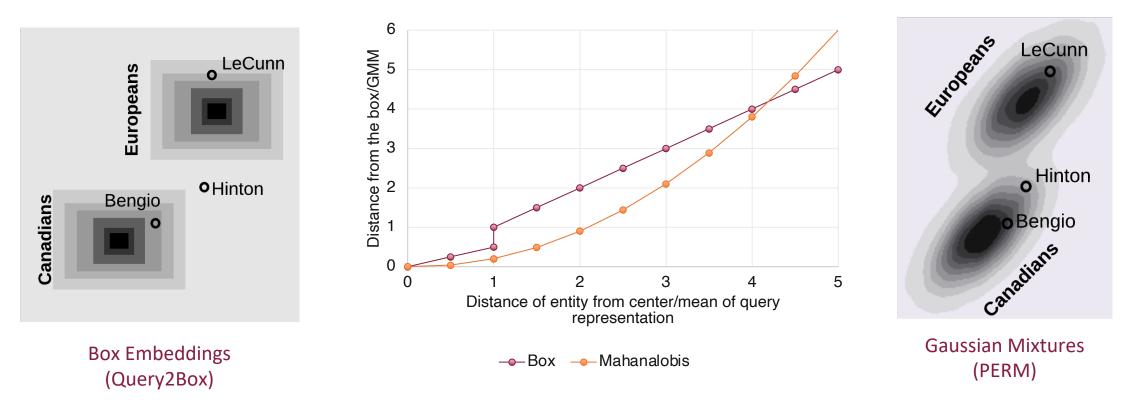


Box Embeddings (Query2Box)

## Two challenges: (i) Non-smooth border (ii) Non-closure of union operation



## **Multivariate Gaussian Representations**


Capture spatial features of entities and relations.

Smooth border through Mahalanobis distance

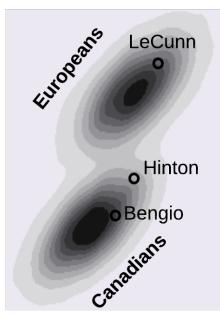
Closure of union operation by Gaussian mixtures Scalability through chain reasoning

Challenge: Smooth Border

### Mahalanobis Distance is a natural choice for a smooth distance function for Multivariate Gaussian Mixtures.



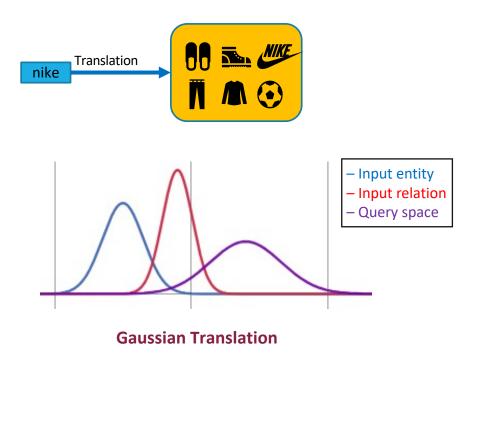
Challenge: Smooth Border


### Mahalanobis Distance is a natural choice for a smooth distance function for Multivariate Gaussian Mixtures.

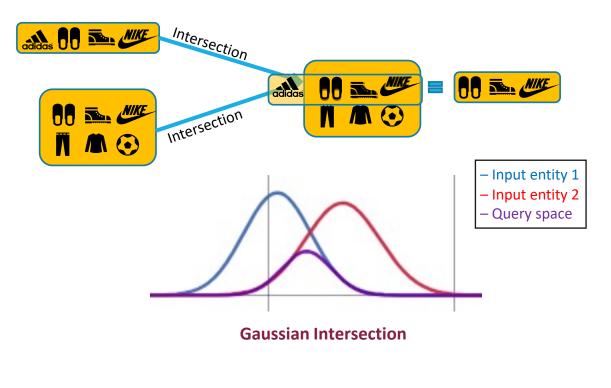




Box Embeddings (Query2Box)


|                     | Entity   | Bengio   | LeCun  | Hinton               |
|---------------------|----------|----------|--------|----------------------|
|                     | Citizen  | Canadian | French | British-<br>Canadian |
| Union of<br>Boxes   | European | 1        | 0.211  | 1.343                |
|                     | Canadian | 0.146    | 1.569  | 1.114                |
|                     | Union    | 0.146    | 0.211  | 1.114                |
| Gaussian<br>Mixture | European | 1        | 0.215  | 1.347                |
|                     | Canadian | 0.146    | 1.57   | 1.118                |
|                     | Union    | 0.255    | 0.626  | 0.766                |

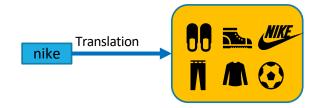



Gaussian Mixtures (PERM)

Challenge: Closed solution to operations

## **Translation Queries:** Gives all children of a query Q: nike

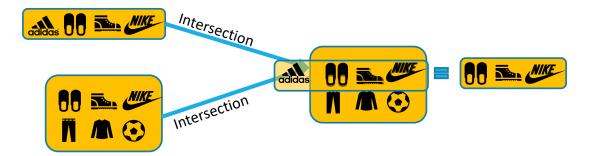



### **Intersection:** Gives intersection for two queries. Q: nike footwear = nike $\cap$ footwear



08 / Our Solution

Challenge: Closed solution to operations


## **Translation Queries:** Gives all children of a query Q: nike

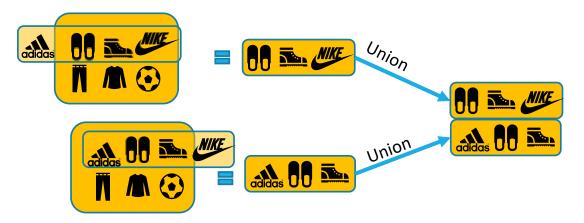


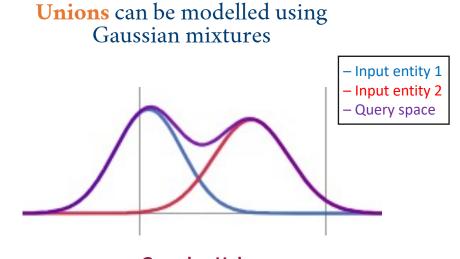
$$q_t = \mathcal{N}(\mu_e + \mu_r, (\Sigma_e^{-1} + \Sigma_r^{-1})^{-1});$$

#### **Gaussian Translation**

**Intersection:** Gives intersection for two queries. Q: nike footwear = nike  $\cap$  footwear



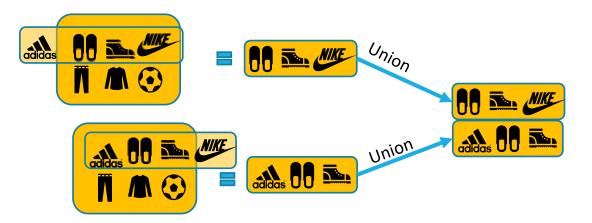

$$q_{\cap} = \mathcal{N}(\mu_{e_1}, \Sigma_{e_1}) \mathcal{N}(\mu_{e_2}, \Sigma_{e_2}) = \mathcal{N}(\mu_3, \Sigma_3);$$
  
where,  $\Sigma_3^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}$   
and  $\mu_3 = \Sigma_3(\Sigma_2^{-1}\mu_1 + \Sigma_1^{-1}\mu_2) \implies \Sigma_3^{-1}\mu_3 = \Sigma_2^{-1}\mu_1 + \Sigma_1^{-1}\mu_2$ 


**Gaussian Intersection** 

08 / Our Solution

Challenge: Closed solution to operations

**Union Queries:** Gives union of two queries. Q: (nike  $\cup$  adidas)  $\cap$  footwear = (nike  $\cap$  footwear)  $\cup$  (adidas  $\cap$  footwear)

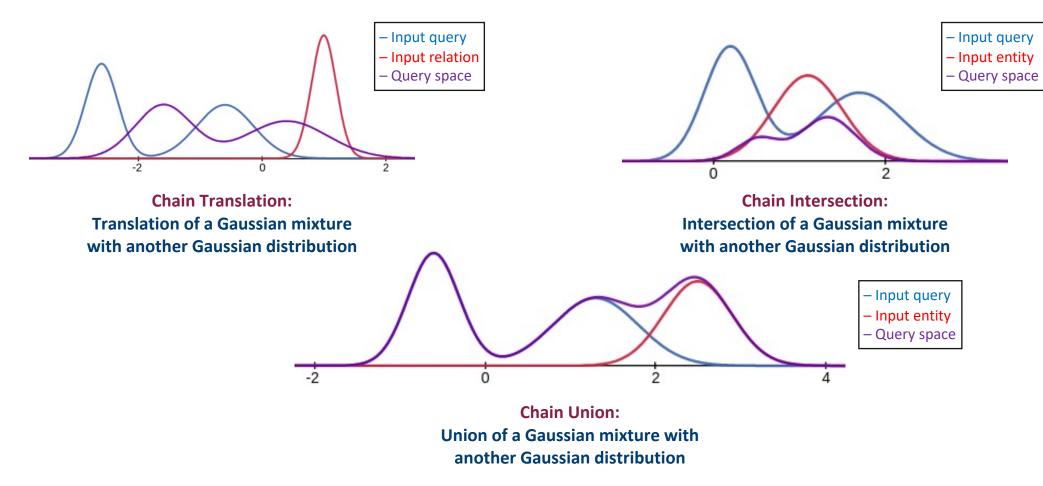





**Gaussian Union** 

Challenge: Closed solution to operations

**Union Queries:** Gives union of two queries. Q: (nike  $\cup$  adidas)  $\cap$  footwear = (nike  $\cap$  footwear)  $\cup$  (adidas  $\cap$  footwear)




**Unions** can be modelled using Gaussian mixtures

$$q_{\cup} = \sum_{i=1}^{n} \phi_{i} \mathcal{N}(\mu_{e_{i}}, \Sigma_{e_{i}});$$
  
where,  $\phi_{i} = \frac{exp\left(\mathcal{N}(\mu_{e_{i}}, \Sigma_{e_{i}})\right)}{\sum_{j=1}^{n} exp\left(\mathcal{N}(\mu_{e_{j}}, \Sigma_{e_{j}})\right)}$ 

**Gaussian Union** 

Challenge: Sequential chain operations.



11 / Our Solution

## **Our Solution** Challenge: Sequential chain operations.

$$c_t = \sum_{i=1}^{n} \phi_i \mathcal{N}(\mu_i + \mu_r, (\Sigma_i^{-1} + \Sigma_r^{-1})^{-1})$$

**Chain Translation:** Translation of a Gaussian mixture with another Gaussian distribution

$$c_{\cap} = \bigcup_{i=1}^{n} \mathcal{N}(\mu_{e}, \Sigma_{e}) \mathcal{N}(\mu_{i}, \Sigma_{i})$$
$$= \sum_{i=1}^{n} \phi_{i} \mathcal{N}(\mu_{e\cap i}, \Sigma_{e\cap i})$$

**Chain Intersection:** Intersection of a Gaussian mixture with another Gaussian distribution

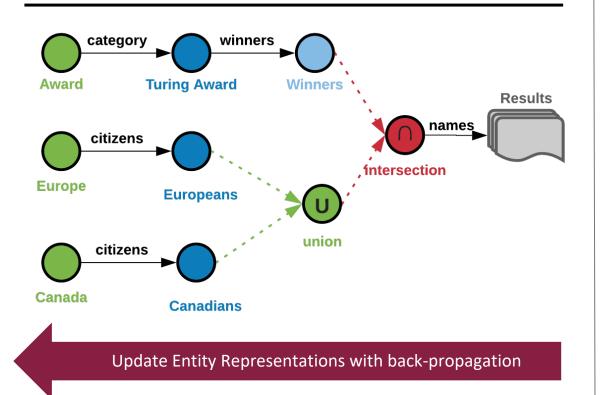
$$c_{\cup} = \sum_{i=1}^{n} \phi_i \mathcal{N}(\mu_i, \Sigma_i) + \phi_e \mathcal{N}(\mu_e, \Sigma_e)$$

Chain Union: Union of a Gaussian mixture with another Gaussian distribution

12 / Our Solution

**Challenge: Scalability** 

Points of note:

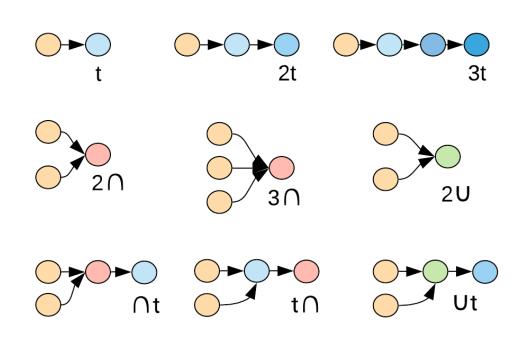

- 1. Single Gaussian/Box query operations require little memory individually.
- 2. Gaussian operation are closed under Gaussian Mixture models. Boxes are not.
- 3. Box operations require DNF transformation for union (needs the entire query). Hence, long queries not reducible to individual operations.

Gaussian queries are reducible to single query operations and can be merged together with sequential chain operations. Thus, they can be scaled to operate on any length of queries.

### Processing a query in PERM architecture

Q: Who (X) are the Canadian (C) and European (E) Turing (T) Award (A) winners (W)?

 $\begin{array}{l} ?X:\exists X.names(X,\exists W.[winners(W,\exists T.category(T,A))\\ \cap [citizen(W,Europe)\cup citizen(W,Canada)]]) \end{array}$ 




- The entire query can be reduced to single operations due to PERM's closure under Gaussian mixture model.
- 2. The reducibility allows us to pre-process small queries, which can be aggregated during full inference.
- 3. This is not possible in the previous approaches, because the DNF transformation would process the entire query together.

# Evaluation

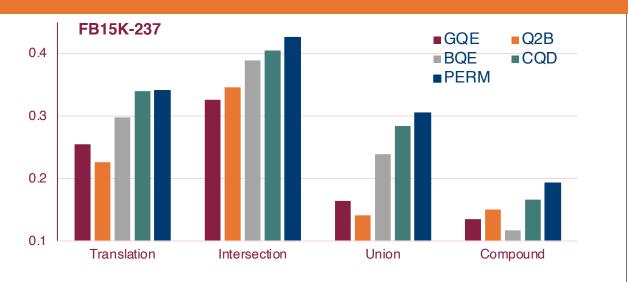
- 1. Reasoning over KGs
- 2. Ablation Study
- 3. Drug Recommendation

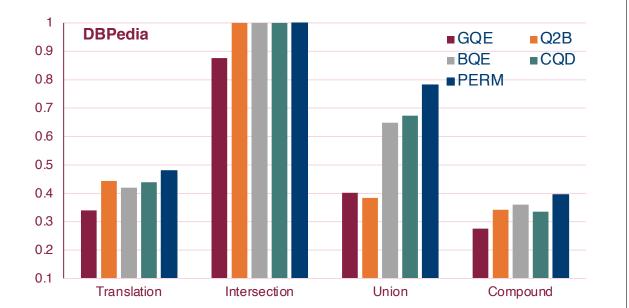
## **Evaluation** Reasoning over KGs

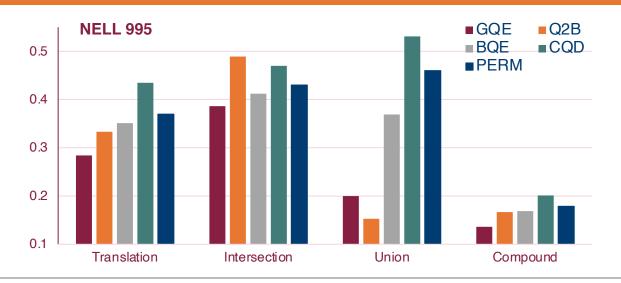


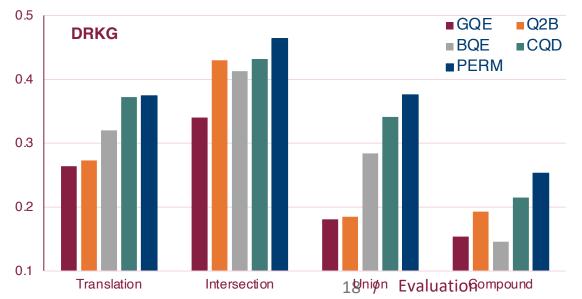
#### Translation (t):

```
1t: "nike", "shoes", "adidas"
2t: "women shoes" ("shoes" \rightarrow "women")
3t: "furniture" ("furniture" → "chair", "table", "dining" → "ikea", "wayfair")
Intersection (\cap):
2∩: "nike shoes" ("nike" AND "shoes")
3∩: "nike jordan laces" ("nike" AND "jordan" AND "laces")
∩t: "nike shoes" ("nike" AND "shoes" →products in the space)
t∩: "furniture ikea" ("furniture"→"chair","table","dining", etc AND "ikea")
Union (U):
```


2∪: "nike and adidas" ("nike" OR "adidas")


Ut: "nike and adidas shoes" ("nike" OR "adidas"→products in the space)

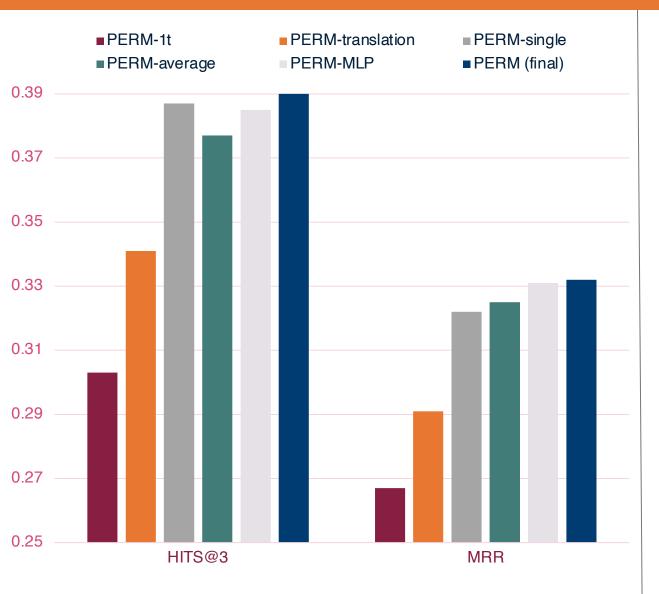




- Logical Query Reasoning
  - Dataset: FB15K-237, NELL995, DBPedia, DRKG
  - **Baselines:** GQE (Vectors), Q2B (Query2Box), BQE(Beta), CQD
  - **Evaluation Metrics:** HITS@3, Mean Reciprocal Rank

## Evaluation Reasoning over KGs (HITS@3)










## **Evaluation** Reasoning over KGs (Qualitative Results)

| Dataset   | Query                                                                           | Results                                          |
|-----------|---------------------------------------------------------------------------------|--------------------------------------------------|
| FB15K-237 | Who are European and Canadian Turing awards winners?                            | Jeffrey Hinton, Yoshua Bengio, Andrew Yao        |
| DBPedia   | Which Actors and Football Players also became Governors?                        | Arnold Schwarzenegger, Heath Shuler, Frank White |
| DRKG      | Which treatment drugs interact with all proteins associated with SARS diseases? | Ribavirin, Dexamethasone, Hydroxy-chloroquine    |

## Evaluation Ablation Study



- **It:** Only 1t queries
- **translation**: Using only translation queries
- single: Using single operator queries
- **average**: Average aggregation.
- MLP: MLP aggregation.

## **Evaluation** Case Study: Drug Recommendation

| Model       | P@10  | R@10  | F1    | Top Recommended Drugs                        |
|-------------|-------|-------|-------|----------------------------------------------|
| GQE         | 0.119 | 0.174 | 0.141 | Piclidenoson, Ibuprofen, Chloroquine         |
| BQE         | 0.159 | 0.200 | 0.177 | Ribavirin, Oseltamivir, Ruxolitinib          |
| Q2B         | 0.194 | 0.255 | 0.221 | Ribavirin, Dexamethasone, Deferoxamine       |
| CQD         | 0.209 | 0.260 | 0.232 | Ribavirin, Dexamethasone, Tofacitinib        |
| PERM        | 0.217 | 0.269 | 0.251 | Ribavirin, Dexamethasone, Hydroxychloroquine |
| PERM vs Q2B | 11.9% | 5.5%  | 13.6% |                                              |
| PERM vs CQD | 3.8%  | 3.5%  | 8.2%  |                                              |

## **Conclusion and Broader Impact**

- 1. We introduce Gaussian Embeddings with closed form solutions for scalable KG reasoning and smooth query borders.
- 2. The reducibility of Gaussian operations allow us to pre-process and store small operations, which can be aggregated for inference.
- 3. The basic idea behind the solution can be extended that needs to encode its basic units as probabilistic embeddings, e.g., model documents as union of topics.

Limitation: PERM depends on the integrity of the KG to learn representations. It cannot handle noisy training graphs, and hence its arbitrary application would be fatal in sensitive areas of research such as drug recommendations. It is necessary to maintain the integrity of training data before learning representations and querying with PERM.



# **Thanks!** Any questions?

### Find me at:



https://nurendra.me

nurendra@vt.edu

Link to Implementation:

https://github.com/Akirato/PERM-GaussianKG

