≒**SRI**LAB

Automatic Discovery of Adaptive Attacks on Adversarial Defenses

ETH zürich

Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin Vechev

Introduction

Adversarial defenses are proposed to address the problem of adversarial examples. However, the authors of many defenses provide over-estimated robustness using fixed set of common techniques. These defenses are broken later with handcrafted adaptive attacks which are designed to reflect the defense mechanism. Yet this approach requires strong domain expertise.

Our Work: We present an extensible tool A^3 that defines a search space over reusable blocks and automatically discovers an effective attack given the defense.

Motivation

Robustness Evaluation Paradigms

Covers a Small Space

Requires Manual Effort

Network Transformation Attack Algorithms & Parameters Loss Functions Space Formulation: Space Formulation: X: Input, Y: Logits, E: Loss. Candidates: $4 \times 3 = 12$ (Attack Search Space) (Loss Function Search Space) S ::= S; S | randomize S | EOT S, n | repeat S, n | L ::= targeted Loss, n with Z | untargeted Loss with Z | try \mathbb{S} for $n \mid Attack$ with params with loss $\in \mathbb{L}$ Reverse targeted Loss, n - untargeted Loss with Z **High Level:** Z ::= logits | probs Forward Pass Layer Removal 8 attacks in the search space - FGSM, PGD, C&W, DeepFool, NES, APGD, FAB, SQR Reverse $\rightarrow Y$ CNN · Sigmoid Generic Parameters - Randomize, Repeat, EOT Non-Differentiable Gradient Obfuscation Attacks Specific Parameters sign Backward Pass Differentiable Sequence of Attacks - Evaluate attacks sequentially and Approximation (BPDA) return the first adversarial examples found Try S for n - set the runtime constraint for the attack to dE Reverse be n seconds CE, Hinge, BPDA, Removal PGD, C&W, FAB. **Network Search** targeted. Attack Algorithms Network Goal: Find the best surrogate model t to Loss Functions Transformations & Parameters attack with. We use t to generate Input Model adversarial images but use f to evaluate with some Attack: s Defenses: f Attack Search **Network Search** Search: Exhaustive search. Use PGD as the test attack to evaluate each candidate. Surrogate Model: t Dataset: D Minimize the Robustness

Overview of A^3

Complexity: Cheap to perform

Loss ::= CrossEntropy | HingeLoss | L1 | DLR | LogitMatching Loss Functions Difference between targeted and untargeted loss is the $\ell_{\text{CrossEntropy}} = -\sum_{i=1}^{K} y_i \log(Z(x)_i)$ $\ell_{\text{HingeLoss}} = \max(-Z(x)_y + \max_{i \neq y} Z(x)_i, -\kappa)$ (Carlin & Warner, 2017) $\ell_{\rm L1} = -Z(x)_y$ Logits/Probs means whether $\ell_{\rm DLR} = -\frac{Z(x)_y - \max_{i \neq i_y} Z(x)_i}{Z(x)_{\pi_1} - Z(x)_{\pi_3}}$ (Croce & Hein, 2020h) to add a softmax to logits $\ell_{\text{logitMatching}} = \|Z(x') - Z(x)\|_2^2$

Attack Search

Goal: Find the best sequence of attacks s

- Search: For number of attacks in the s, repeat 1-3 (Greedy): 1. Get a set of samples from D for attack evaluation
- 2. Use Tree Parzen Estimation to select attacks
- 3. Use Successive Halving to select the best attack

Complexity: We constrained the per sample attack runtime. The search time bound is 4/3 of the attack runtime bound.

Result

- A^3 is evaluated on 24 defenses and compared with AutoAttack (AA)
- 10 cases: 3.0%-50.8% additional adversarial examples.
- 13 cases: Typically 2x faster attack time.

CIFAR-10, l_∞		AA	\mathbf{A}^3	Δ	AA	\mathbf{A}^3	Speed-up	\mathbb{A}^3
A1	Madry et al. (2018)	44.78	44.69	-0.09	25	20	1.25×	88
$A2^{\dagger}$	Buckman et al. (2018)	2.29	1.96	-0.33	9	7	1.29×	116
A3 [†]	Das et al. (2017)	0.59	0.11	-0.48	6	2	3.00×	40
A4	Metzen et al. (2017)	6.17	3.04	-3.13	21	13	$1.62 \times$	80
A5	Guo et al. (2018)	22.30	12.14	-10.16	19	17	$1.12 \times$	99
$A6^{\dagger}$	Pang et al. (2019)	4.14	3.94	-0.20	28	24	1.17×	237
Α7	Papernot et al. (2015)	2.85	2.71	-0.14	4	4	$1.00 \times$	84
A8	Xiao et al. (2020)	19.82	11.11	-8.71	49	22	2.23×	189
A9	Xiao et al. (2020)ADV	64.91	63.56	-1.35	157	100	1.57×	179
A9'	Xiao et al. (2020)ADV	64.91	17.70	-47.21	157	2,280	$0.07 \times$	1,548
B10*	Gowal et al. (2021)	62.80	62.79	-0.01	818	226	3.62×	761
B11*	Wu et al. (2020) _{RTS}	60.04	60.01	-0.03	706	255	2.77×	690
B12*	Zhang et al. (2021)	59.64	59.56	-0.08	604	261	2.31×	565
B13*	Carmon et al. (2019)	59.53	59.51	-0.02	638	282	$2.26 \times$	575
$B14^*$	Sehwag et al. (2020)	57.14	57.16	0.02	671	429	$1.56 \times$	691
C15*	Stutz et al. (2020)	77.64	39.54	-38.10	101	108	$0.94 \times$	296
C15'	Stutz et al. (2020)	77.64	26.87	-50.77	101	205	$0.49 \times$	659
C16*	Zhang & Wang (2019)	36.74	37.11	0.37	381	302	$1.26 \times$	726
C17	Grathwohl et al. (2020)	5.15	5.16	0.01	107	114	0.94×	749
C18	Xiao et al. (2020)ADV	5.40	2.31	-3.09	95	146	$0.65 \times$	828
C19	Wang et al. (2019)	50.84	50.81	-0.03	734	372	$1.97 \times$	755
$C20^{\dagger}$	B11 + Defense in A3	60.72	60.04	-0.68	621	210	2.96×	585
$C21^{\dagger}$	C17 + Defense in A3	15.27	5.24	-10.03	261	79	3.30×	746
C22	B11 + Random Rotation	49.53	41.99	-7.54	255	462	0.55×	900
C23	C17 + Random Rotation	22.29	13.45	-8.84	114	374	$0.30 \times$	1,023
C24	Hu et al. (2019)	6.25	3.07	-3.18	110	56	1.96×	502

In addition, the attacks found by A^3 can reflect the defense mechanism. (Analysis for C15, C18, C24 are shown in the paper)

Automate the Manual Process