Multiple Descent: Design Your Own Generalization Curve

Lin Chen¹ Yifei Min²

Mikhail Belkin³

Amin Karbasi⁴

¹Simons Institute for the Theory of Computing
 ²Department of Statistics and Data Science, Yale University
 ³Halıcıoğlu Data Science Institute, UCSD
 ⁴Department of EECS, Yale University

NeurIPS 2021

Outline

Introduction

Problem Formulation

Underparametrized Regime

Overparametrized Regime

Summary

Setup

Let $x_1, \dots, x_n \in \mathbb{R}^D$ be i.i.d. training data of size *n*, and $x_{\text{test}} \in \mathbb{R}^D$ be the test date point.

• $x_1, \cdots, x_n, x_{\text{test}} \sim \mathcal{D}$

Consider a linear regression problem, where only the first d dimensions of the feature is revealed where d < D.

• Denote
$$\tilde{x}_i = x_i[1:d] \in \mathbb{R}^d$$
.

The response is given by $y_i = \tilde{x}_i^\top \beta + \epsilon_i$, $i = 1, \dots, n$, where the noise $\epsilon_i \sim \mathcal{N}(0, \eta^2)$ i.i.d.

• In this paper, the sample size *n* is fixed, and the dimension *d* can vary.

Problem

We want to study the least square estimator $\hat{\beta}$ of β and its excess generalization loss, as *d* increases. To find $\hat{\beta}$:

- Denote the design matrix $A = [\tilde{x}_1, \cdots, \tilde{x}_n]^\top \in \mathbb{R}^{n \times d}$.
- We consider the estimator $\hat{\beta} = A^+(A\beta + \epsilon)$, where A^+ denotes the pseudo-inverse of A.
- In the underparametrized regime (i.e. d < n), $\hat{\beta}$ defined above is the OLS estimator.
- In the overparametrized regime (i.e. d > n), $\hat{\beta}$ is the minimum norm solution that achieves zero training error.

Recap of results in Liang et al. (2020)

- Liang et al. (2020) presented a multiple-descent upper bound on the risk of the minimum-norm interpolation vs. the data dimension.
- **Compared to our work:** A multiple-descent upper bound without a properly matching lower bound does not imply the existence of a multiple-descent generalization curve. We gave an explicit construction and proved the multiple descent of generalization curve itself.

Problem

Excess generalization loss L_d for any d > 0 is given by:

$$L_{d} \triangleq \mathbb{E}\left[\left(y - x^{\top}\hat{\beta}\right)^{2} - \left(y - x^{\top}\beta\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(x^{\top}(\hat{\beta} - \beta)\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(x^{\top}\left((A^{+}A - I)\beta + A^{+}\varepsilon\right)\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(x^{\top}(A^{+}A - I)\beta\right)^{2}\right] + \mathbb{E}\left[\left(x^{\top}A^{+}\varepsilon\right)^{2}\right]$$

$$= \underbrace{\mathbb{E}\left[\left(x^{\top}(A^{+}A - I)\beta\right)^{2}\right]}_{bias} + \underbrace{\eta^{2}\mathbb{E}\left\|(A^{\top})^{+}x\right\|^{2}}_{variance}, \qquad (1)$$

where $y = x^{\top}\beta + \varepsilon_{\text{test}}$ and $\varepsilon_{\text{test}} \sim \mathcal{N}(0, \eta^2)$.

In the underparametrized regime, if \mathcal{D} is a continuous distribution, the matrix A has independent column almost surely. Then we have

$$L_d = \eta^2 \mathbb{E} \left\| (A^{\top})^+ x \right\|^2.$$

This is because in this case, we have $A^+A = I$ and therefore the bias $\mathbb{E}\left[(x^\top (A^+A - I)\beta)^2\right]$ vanishes.

Theorem (Underparametrized regime)

If d < n, we have $L_{d+1} \ge L_d$ irrespective of the data distribution \mathcal{D} . Moreover, for any C > 0, there exists a distribution \mathcal{D} such that $L_{d+1} - L_d > C$.

Theorem (Underparametrized regime)

If d < n, we have $L_{d+1} \ge L_d$ irrespective of the data distribution \mathcal{D} . Moreover, for any C > 0, there exists a distribution \mathcal{D} such that $L_{d+1} - L_d > C$.

Remark:

- The theorem says that in the underparametrized regime, the excess generalization loss always increases as *d* increases.
- The increase can have arbitrary magnitude.
- Our proof shows that D can be a product distribution (i.e. independence between dimensions), and each single distribution can be as simple as a Gaussian mixture.

Underparametrized Regime

Proof Sketch: Do a decomposition

$$\begin{bmatrix} A^{\top} \\ b^{\top} \end{bmatrix}^{+} = \left[\left(I - \frac{bb^{\top}}{\|b\|^2} \right) \left(I + \frac{AA^+bb^{\top}}{\|b\|^2 - b^{\top}AA^+b} \right) (A^+)^{\top}, \frac{(I - AA^+)b}{\|b\|^2 - b^{\top}AA^+b} \right]$$

and we can get

$$L_{d+1} - L_d$$

$$= \mathbb{E}\left[\left\| \begin{bmatrix} A^\top \\ b^\top \end{bmatrix}^+ \begin{bmatrix} x \\ x_1 \end{bmatrix} \right\|^2 - \left\| (A^+)^\top x \right\|^2 \right]$$

$$\geq -\underbrace{\mathbb{E}}_{l_1} \left\| (A^+)^\top x \right\|^2 + \underbrace{\mathbb{E}}_{l_2} \left[\frac{x_1^2}{\sum_{i=1}^n b_i^2} \right]_{l_2}.$$

Then we show I_1 is finite and I_2 can be made arbitrarily big by some \mathcal{D} .

For the overparametrized regime where d > n, we consider two cases:

- *β* = 0.
- $\beta \neq 0$.

 $\beta = 0$ case:

• L_d is just the variance $\mathbb{E} ||(A^{\top})^+ x||^2$.

Theorem (Overparametrized regime, $\beta = 0$)

Let n < D - 9. Given any sequence $\Delta_{n+8}, \Delta_{n+9}, \ldots, \Delta_{D-1}$ where $\Delta_d \in \{\uparrow,\downarrow\}$, there exists a distribution \mathcal{D} such that for every $n+8 \le d \le D-1$, we have

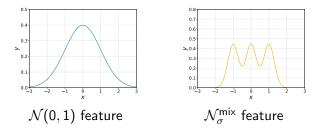
$$L_{d+1} \begin{cases} > L_d, & \text{if } \Delta_d = \uparrow \\ < L_d, & \text{if } \Delta_d = \downarrow. \end{cases}$$

 Remark: The theorem says that we can control the ascent/descent in the overparametrized regime.

What is the distribution \mathcal{D} ?

What is the distribution \mathcal{D} ?

• It turns out that one can create a descent $(L_{d+1} < L_d)$ by adding a Gaussian feature and create an ascent $(L_{d+1} > L_d)$ by adding a Gaussian mixture feature.



Gaussian β setting: we study the setting where each entry of β is i.i.d. $\mathcal{N}(0, \rho^2)$. We show that multiple descent can also be achieved.

Gaussian β setting: we study the setting where each entry of β is i.i.d. $\mathcal{N}(0, \rho^2)$. We show that multiple descent can also be achieved.

We have bias when $\beta \neq 0$.

$$\mathcal{E}_d \triangleq (x^\top (A^+ A - I)\beta)^2, \quad \mathcal{E}_{d+1} \triangleq \left([x^\top, x_1] ([A, b]^+ [A, b] - I) \begin{bmatrix} \beta \\ \beta_1 \end{bmatrix} \right)^2$$

Gaussian β setting: we study the setting where each entry of β is i.i.d. $\mathcal{N}(0, \rho^2)$. We show that multiple descent can also be achieved.

We have bias when $\beta \neq 0$.

$$\mathcal{E}_{d} \triangleq (x^{\top}(A^{+}A - I)\beta)^{2}, \quad \mathcal{E}_{d+1} \triangleq \left([x^{\top}, x_{1}]([A, b]^{+}[A, b] - I) \begin{bmatrix} \beta \\ \beta_{1} \end{bmatrix} \right)^{2}$$

Then the expected risks

$$L_{d}^{\exp} = \mathbb{E}[\mathcal{E}_{d}] + \eta^{2} \mathbb{E} \left\| (A^{\top})^{+} x \right\|^{2},$$

$$L_{d+1}^{\exp} = \mathbb{E}[\mathcal{E}_{d+1}] + \eta^{2} \mathbb{E} \left\| \begin{bmatrix} A^{\top} \\ b^{\top} \end{bmatrix}^{+} \begin{bmatrix} x \\ x_{1} \end{bmatrix} \right\|^{2},$$

where $\beta \sim \mathcal{N}(0, \rho^2 I_d)$ and $\beta_1 \sim \mathcal{N}(0, \rho^2)$.

Theorem (informal)

Under mild conditions, the following holds:

1. If $x_1, b_1, \ldots, b_n \stackrel{id}{\sim} \mathcal{N}_{\sigma,\mu}^{\text{mix}}$, for any C > 0, there exist μ, σ such that $L_{d+1}^{\exp} - L_d^{\exp} > C$.

2. If $x_1, b_1, \ldots, b_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$, there exists $\sigma > 0$ such that for all

$$\rho \le \eta \sqrt{\frac{\mathbb{E}[\|(A^{\top}A)^{+}x\|^{2}]}{\mathbb{E}\|A^{+\top}x\|^{2}+1}},$$

we have $L_{d+1}^{exp} < L_d^{exp}$.

Summary

- Our work proves that the expected risk of linear regression can manifest multiple descents when the number of features increases and sample size is fixed.
- This is done by designing the distribution of each feature.
- Specifically, the procedure enables us to control local maxima in the underparametrized regime and control ascents/descents freely in the overparametrized regime.

Thank you!

Chen, Min, Belkin, Karbasi, "Multiple Descent: Design Your Own Generalization Curve,"

LIANG, T., RAKHLIN, A. and ZHAI, X. (2020). On the multiple descent of minimum-norm interpolants and restricted lower isometry of kernels. In *Conference on Learning Theory*. PMLR.