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Setup

Let x1, · · · , xn ∈ RD be i.i.d. training data of size n, and
xtest ∈ RD be the test date point.

• x1, · · · , xn, xtest ∼ D
Consider a linear regression problem, where only the first d
dimensions of the feature is revealed where d < D.

• Denote x̃i = xi [1 : d ] ∈ Rd .

The response is given by yi = x̃>i β + εi , i = 1, · · · , n, where the
noise εi ∼ N (0, η2) i.i.d.

• In this paper, the sample size n is fixed, and the dimension d can
vary.



Problem

We want to study the least square estimator β̂ of β and its excess
generalization loss, as d increases.
To find β̂:

• Denote the design matrix A = [x̃1, · · · , x̃n]> ∈ Rn×d .

• We consider the estimator β̂ = A+(Aβ + ε), where A+ denotes
the pseudo-inverse of A.

• In the underparametrized regime (i.e. d < n), β̂ defined above is
the OLS estimator.

• In the overparametrized regime (i.e. d > n), β̂ is the minimum
norm solution that achieves zero training error.



Recap of results in Liang et al. (2020)

• Liang et al. (2020) presented a multiple-descent upper bound on
the risk of the minimum-norm interpolation vs. the data
dimension.

• Compared to our work: A multiple-descent upper bound
without a properly matching lower bound does not imply the
existence of a multiple-descent generalization curve. We gave an
explicit construction and proved the multiple descent of
generalization curve itself.



Problem

Excess generalization loss Ld for any d > 0 is given by:

Ld , E
[(

y − x>β̂
)2
−
(
y − x>β

)2]
= E
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x>(β̂ − β)

)2]
= E

[(
x>
(
(A+A− I )β + A+ε

))2]
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[
(x>(A+A− I )β)2
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bias

+ η2E
∥∥∥(A>)+x

∥∥∥2︸ ︷︷ ︸
variance

, (1)

where y = x>β + εtest and εtest ∼ N (0, η2).



Underparametrized Regime

In the underparametrized regime, if D is a continuous distribution,
the matrix A has independent column almost surely. Then we have

Ld = η2E
∥∥∥(A>)+x

∥∥∥2 .
This is because in this case, we have A+A = I and therefore the
bias E

[
(x>(A+A− I )β)2

]
vanishes.

Theorem (Underparametrized regime)

If d < n, we have Ld+1 ≥ Ld irrespective of the data distribution
D. Moreover, for any C > 0, there exists a distribution D such
that Ld+1 − Ld > C .



Underparametrized Regime

Theorem (Underparametrized regime)

If d < n, we have Ld+1 ≥ Ld irrespective of the data distribution
D. Moreover, for any C > 0, there exists a distribution D such
that Ld+1 − Ld > C .

Remark:

• The theorem says that in the underparametrized regime, the
excess generalization loss always increases as d increases.

• The increase can have arbitrary magnitude.

• Our proof shows that D can be a product distribution (i.e.
independence between dimensions), and each single distribution
can be as simple as a Gaussian mixture.



Underparametrized Regime
Proof Sketch:
Do a decomposition[

A>

b>

]+
=
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)(
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∥∥∥∥∥
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]∥∥∥∥∥
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.

Then we show I1 is finite and I2 can be made arbitrarily big by
some D.



Overparametrized Regime

For the overparametrized regime where d > n, we consider two
cases:

• β = 0.

• β 6= 0.



Overparametrized Regime

β = 0 case:

• Ld is just the variance E
∥∥(A>)+x

∥∥2.

Theorem (Overparametrized regime, β = 0)

Let n < D − 9. Given any sequence ∆n+8,∆n+9, . . . , ∆D−1 where
∆d ∈ {↑, ↓}, there exists a distribution D such that for every
n + 8 ≤ d ≤ D − 1, we have

Ld+1

{
> Ld , if ∆d = ↑
< Ld , if ∆d = ↓ .

• Remark: The theorem says that we can control the
ascent/descent in the overparametrized regime.



Overparametrized Regime

What is the distribution D?

• It turns out that one can create a descent (Ld+1 < Ld) by
adding a Gaussian feature and create an ascent (Ld+1 > Ld) by
adding a Gaussian mixture feature.
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Overparametrized Regime

What is the distribution D?
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Overparametrized Regime

Gaussian β setting: we study the setting where each entry of β is
i.i.d. N (0, ρ2). We show that multiple descent can also be
achieved.

We have bias when β 6= 0.

Ed , (x>(A+A− I )β)2, Ed+1 ,

(
[x>, x1]([A, b]+[A, b]− I )

[
β
β1

])2

.

Then the expected risks

Lexpd = E[Ed ] + η2E
∥∥∥(A>)+x

∥∥∥2 ,
Lexpd+1 = E[Ed+1] + η2E

∥∥∥∥∥
[
A>

b>

]+ [
x
x1

]∥∥∥∥∥
2

,

where β ∼ N (0, ρ2Id) and β1 ∼ N (0, ρ2).
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Overparametrized Regime

Theorem (informal)

Under mild conditions, the following holds:

1. If x1, b1, . . . , bn
iid∼ Nmix

σ,µ , for any C > 0, there exist µ, σ such
that Lexpd+1 − Lexpd > C .

2. If x1, b1, . . . , bn
iid∼ N (0, σ2), there exists σ > 0 such that for all

ρ ≤ η

√
E[‖(A>A)+x‖2]

E‖A+>x‖2 + 1
,

we have Lexpd+1 < Lexpd .



Summary

• Our work proves that the expected risk of linear regression can
manifest multiple descents when the number of features
increases and sample size is fixed.

• This is done by designing the distribution of each feature.

• Specifically, the procedure enables us to control local maxima in
the underparametrized regime and control ascents/descents
freely in the overparametrized regime.



Thank you!

Chen, Min, Belkin, Karbasi, “Multiple Descent: Design Your Own
Generalization Curve,”
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