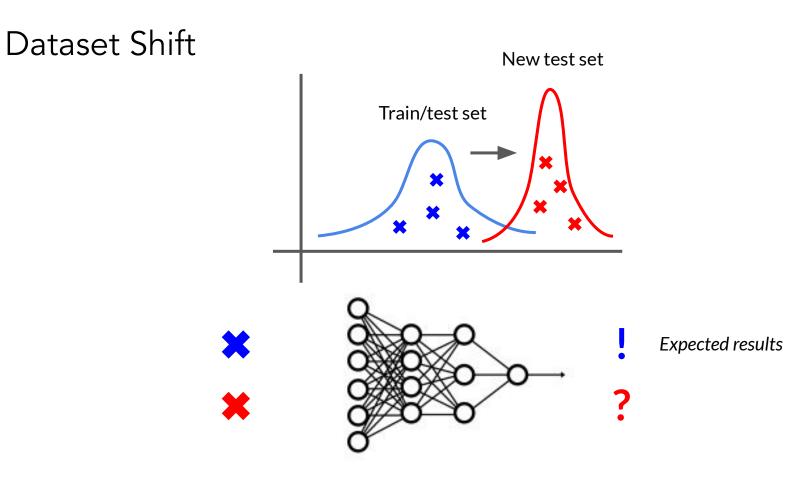
Reliable and Trustworthy Machine Learning for Health Using Dataset Shift Detection

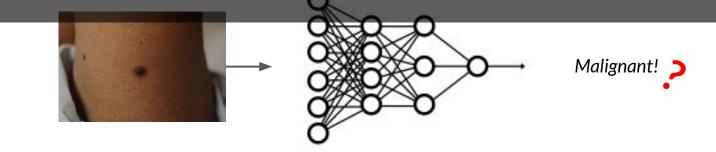
Chunjong Park, Anas Awadalla, Tadayoshi Kohno, Shwetak Patel University of Washington


AI-Powered Health Applications

Google's heart/resp. rate

Apple's AFib detection

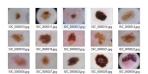
Cancer diagnosis


Dataset Shift in ML for Health

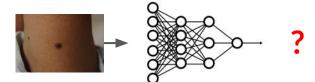
Can I trust this result?

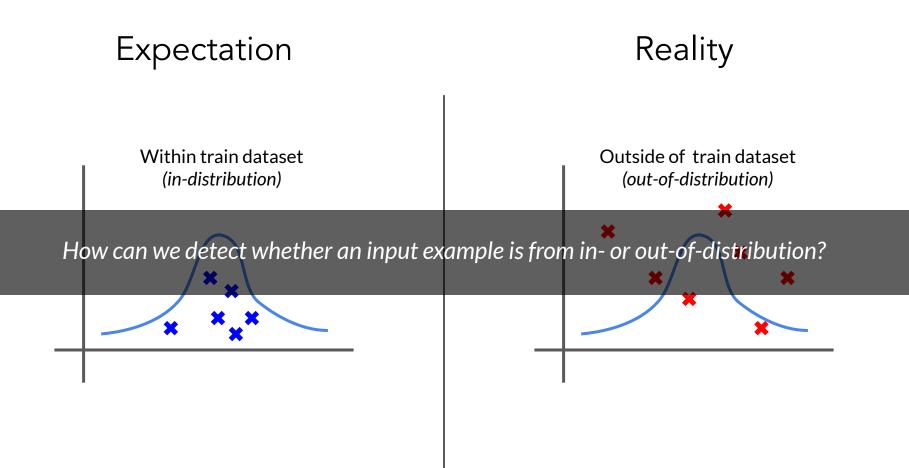
028.jpg ISIC 0000029.jpg

Does the model understand the input image?


Dataset Shift in ML for Health

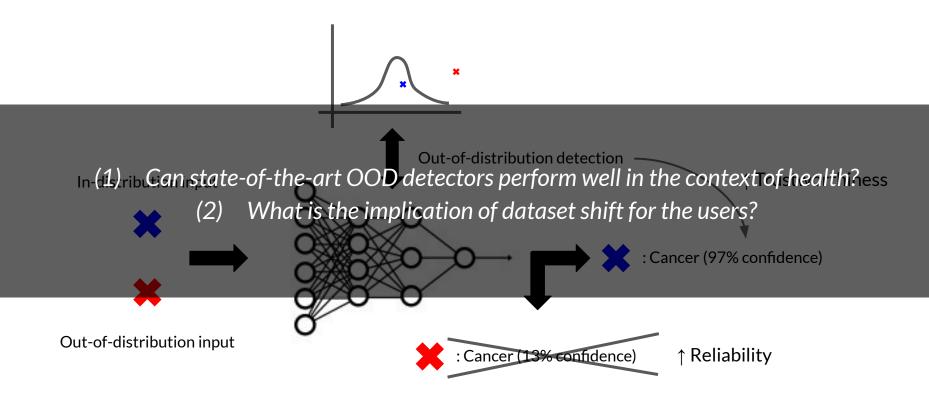
Difficult for non-experts to decide when to trust


- Medical decisions are high-stakes


Difficult to get a complete coverage over a domain

- Emerging dataset for new diseases
- Device heterogeneity
- Potential bias within dataset

Train dataset



Out-of-Distribution Detection

2. Chandramouli Shama Sastry and Sageev Oore. Detecting out-of-distribution examples with gram matrices. ICML 2020

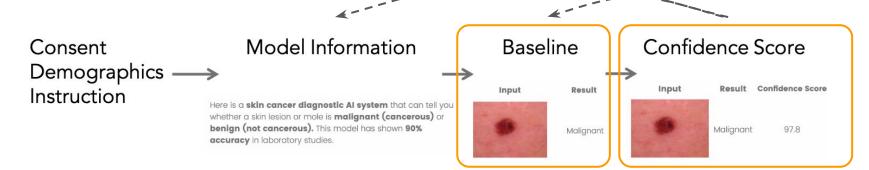
Reliable and Trustworthy ML for Health

Experiment Settings - OOD Detection

OOD methods: Mahalanobis distance, Gram matrices

	Skin Lesion Classifier	Lung Sound Classifier	Parkinson's Classifie
Network	DenseNet-121	ResNet-34	5×1D-Conv
Train/test datasets	HAM10000 skin lesion images	ICHBI 2017 stethoscope lung sound	mPower <i>acc. signal</i> Near-distribution
OOD datasets	ISIC2017	Digital Stethoscope	Kaggle Parkinson's
	London Face	Audioset	MHEALTH
	CIFAR16		MotionSense

9


OOD Detection for Reliable ML for Health

		Detection Accuracy	
	OOD datasets	Mahalanobis distance	Gram matrices
Skin lesion	ISIC2017	59.28	74.98
	London Face	99.96	96.34
	CIFAR16	99.61	Near-distribution 96.90
Lung sound	Digital Stethoscope	80.57	76.05
	Audioset	97.34	95.97
Parkinson's	Kaggle Parkinson's	99.47	99.67
	MHEALTH	100.00	99.99
	MotionSense	99.89	99.60

OOD Detection for Trustworthy Health ML Models

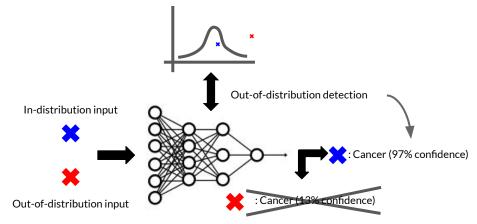
Online user study

24 scenarios = 2 conditions (baseline vs. confidence score) × 3 data types (image, audio, motion data) × 2 confidence score (high vs. low) × 2 results (positive vs. negative)

Question for baseline/confidence score

- 1. User-perceived trustworthiness (5-point Likert scale)
- 2. Impact on making medical decisions (3-point Likert scale)

User Study Results


192 participants (155 male, 67 female, 42.7 ± 9.1 years old)

Higher trust for results with confidence score (*p*<0.001, *r*=0.393) **More willing make medical decisions** with confidence score (*p*<0.001, *r*=0.178)

Larger effect in results with high confidence score ($r_{high} = 0.475 > r_{low} = 0.317$)

Effects **differ** by data types (r_{image} =0.436 > r_{audio} =0.384 > r_{motion} =0.361)

OOD Detection for ML for Healthcare

- Proposed a workflow for reliable/trustworthy ML for health
- OOD detectors can be applied to health ML using different data types
- OOD detection results improve user trustworthiness for health prediction results
- A step toward building trustworthy AI applications for high-stakes decision making

Chunjong "CJ" Park (<u>ciparkuw@cs.washington.edu</u>, <u>www.cipark.xyz</u>)

ubicompla

