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The canonical 2-armed bandit (2-MAB) revisited

Two arms with means µ1, µ2.

Gap ∆ := µ1 − µ2 > 0.

Reward sequence for arm i ∈ {1, 2}: {Xi ,j : j = 1, 2, ...}.
Xi ,j ’s are independent and bounded in [0, 1].

Goal. Maximize cumulative expected payoffs over n plays.

Question. What should inform the sequence of arm-pulls?
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The canonical 2-armed bandit (2-MAB) revisited

Policy π := {πt ; t = 1, ..., n} prescribes arm πt ∈ {1, 2} at time t.

Cumulative regret of policy π after n samples is given by

Rπn :=
n∑

t=1

[
µ1 − Xπt ,Nπt (t)

]
,

where Nπt (t) indicates the number of pulls of arm πt until time t.

The goal is minimization of the expected cumulative regret, i.e.,

inf
π∈Π

ERπn ,

where Π is the set of non-anticipating policies
(A “good” policy has o(n) regret, i.e., long-run-average optimality.).
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Well-known algorithms for the problem

Plethora of available algorithms.

Forced sampling-based: Explore-then-Commit, εn-Greedy︸ ︷︷ ︸
non−adaptive (∆−dependent)

, etc.

Posterior sampling-based: Thompson Sampling and variants︸ ︷︷ ︸
adaptive (∆−independent)

, etc.

Optimism-based: UCB and variants︸ ︷︷ ︸
adaptive (∆−independent)

, etc.
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Upper Confidence Bounds: The Optimism principle

UCB(ρ): UCB with exploration coefficient ρ

At time t + 1, play an arm πt+1 ∈ {1, 2} according to

πt+1 ∈ arg max
i∈{1,2}

(
X̄i (t) +

√
ρ log t

Ni (t)

)
.

Here,

1 X̄i (t) denotes the empirical mean reward from arm i at time t+, i.e.,

X̄i (t) :=

∑Ni (t)
j=1 Xi ,j

Ni (t)
.

2 ρ = 2 corresponds to classical UCB1.
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Achievable regret in 2-MAB

Instance-dependent bounds (Fixed ∆, large n) [Easy problems]:

ERπn 6
C1ρ log n

∆
+

C2∆

ρ− 1
for π = UCB with ρ > 1.

ERπn = Ω

(
log n

∆

)
(L.B. for any policy π).

Minimax bounds (Fixed n, worst-case ∆) [Hard problems]:

ERπn 6 Cρ
√
n log n for π = UCB with ρ > 1.

ERπn = Ω
(√

n
)

(L.B. for any policy π).

Note: Thompson Sampling also has similar guarantees, to wit,

O
(

log n
∆

)
and O

(√
n log n

)
respectively.
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How about the distribution of arm-pulls?

How well do we understand the distribution of N1(n)
n ?

Existing results offer limited insight.

E.g., if ∆� 0, then first-order optimal algorithms guarantee

N1(n)

n
⇒ 1 as n→∞.

But, what happens to N1(n)
n as ∆→ 0?
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Distribution of arm-pulls as ∆→ 0

Why bother about N1(n)
n as ∆→ 0?

Consider a 2-MAB with ∆ = 0 and Bernoulli(0.5) rewards.
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Figure: Empirical distribution of N1(n)
n

after n = 104 pulls [N = 105 experiments].

Fairness: “Similar” arms should get “similar” traffic w.h.p.

Ex post inference: Clinical trials of 2 “similarly” efficacious vaccines!

The Countable-armed Bandit problem [KZ’20].
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The curious case of ∆ = 0

TS-BP: Thompson Sampling with Beta priors, Bernoulli likelihoods

At time t + 1, play an arm πt+1 ∈ {1, 2} according to

πt+1 ∈ arg max
i∈{1,2}

Bi ,t
(
S t
i ,F

t
i

)
.

[Theorem] “Instability” of TS-BP

In a 2-MAB with ∆ = 0, there exists a pair of instances (ν1, ν2) s.t.

On ν1, N1(n)
n ⇒ 1

2 as n→∞.

On ν2, N1(n)
n ⇒ Uniform on [0, 1] as n→∞.
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General ∆: Distribution of arm-pulls under UCB

[Theorem] Sampling asymptotics for UCB with ρ > 1

In a 2-MAB with gap ∆, the following holds as n→∞:

N1(n)

n
⇒


1 if ∆ = ω

(√
log n
n

)
,

λ∗ρ(θ) if ∆ ∼
√

θ log n
n for some fixed θ > 0,

1
2 if ∆ = o

(√
log n
n

)
.

λ∗ρ(θ) is deterministic and can be characterized in closed-form!

Recall: Thompson Sampling may result in a non-degenerate limit!
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Worst-case behavior of UCB

[Theorem] Minimax regret of UCB with ρ > 1

In a 2-MAB, the worst-case regret of UCB follows the sharp asymptotic

ERπn ∼ f (ρ)
√

n log n.

The constant f (ρ) can be characterized in closed-form!
(Note: The information-theoretic optimal minimax rate is Θ

(√
n
)
.)

Remark: Previous best result for UCB was O
(√

n log n
)

minimax regret.
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Diffusion-scale analysis of bandits

Information-theoretic hardest instances have ∆ � 1√
n .

Analogous to the “heavy-traffic/QED” regime in queuing,
where 1 - traffic intensity � 1√

n .

The queuing problem admits well-known diffusion limits.

Can similar results be established also for bandits?
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Diffusion approximation for UCB

[Theorem] Diffusion limit regret of UCB with ρ > 1

In a 2-MAB with gap ∆ ∼ c√
n

, the following holds under UCB as n→∞:(
Rπbntc√

n

)
t∈[0,1]

⇒

(
ct

2
+

√
σ2

1 + σ2
2

2
B(t)

)
t∈[0,1]

,

where
{
σ2
i : i = 1, 2

}
are the reward variances, and B(t) is a standard

Brownian motion in R.

Note: For Thompson Sampling, the diffusion limit is characterized by the
solution(s) to a SDE ([Wager & Xu, 2021],[Fan & Glynn, 2021]).
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