A Closer Look at the Worst-case Behavior of Multi-armed Bandit Algorithms

Anand Kalvit (Joint work with Assaf Zeevi)

Columbia University, New York

NeurIPS 2021

Anand Kalvit

Assaf Zeevi

- Two arms with means μ_1, μ_2 .
- Gap $\Delta := \mu_1 \mu_2 > 0.$

- ∢ ∃ ▶

- Two arms with means μ_1, μ_2 .
- Gap $\Delta := \mu_1 \mu_2 > 0.$
- Reward sequence for arm $i \in \{1, 2\}$: $\{X_{i,j} : j = 1, 2, ...\}$.
- $X_{i,j}$'s are independent and bounded in [0,1].

- Two arms with means μ_1, μ_2 .
- Gap $\Delta := \mu_1 \mu_2 > 0.$
- Reward sequence for arm $i \in \{1, 2\}$: $\{X_{i,j} : j = 1, 2, ...\}$.
- $X_{i,j}$'s are independent and bounded in [0, 1].
- Goal. Maximize cumulative expected payoffs over *n* plays.
- Question. What should inform the sequence of arm-pulls?

• Policy $\pi := \{\pi_t; t = 1, ..., n\}$ prescribes arm $\pi_t \in \{1, 2\}$ at time t.

- Policy $\pi := \{\pi_t; t = 1, ..., n\}$ prescribes arm $\pi_t \in \{1, 2\}$ at time t.
- Cumulative regret of policy π after *n* samples is given by

$$R_n^{\pi} := \sum_{t=1}^n \left[\mu_1 - X_{\pi_t, \mathbf{N}_{\pi_t}(t)} \right],$$

where $N_{\pi_t}(t)$ indicates the number of pulls of arm π_t until time t.

- Policy $\pi := \{\pi_t; t = 1, ..., n\}$ prescribes arm $\pi_t \in \{1, 2\}$ at time t.
- Cumulative regret of policy π after *n* samples is given by

$$R_n^{\pi} := \sum_{t=1}^n \left[\mu_1 - X_{\pi_t, \mathbf{N}_{\pi_t}(t)} \right],$$

where $N_{\pi_t}(t)$ indicates the number of pulls of arm π_t until time t. • The goal is minimization of the **expected cumulative regret**, i.e.,

$$\inf_{\pi\in\Pi}\mathbb{E}R_n^{\pi},$$

where Π is the set of non-anticipating policies (A "good" policy has o(n) regret, i.e., long-run-average optimality.).

- Plethora of available algorithms.
- Forced sampling-based: Explore-then-Commit, ϵ_n -Greedy, etc.

non-adaptive (Δ -dependent)

• Posterior sampling-based: Thompson Sampling and variants, etc.

adaptive $(\Delta - independent)$

• **Optimism-based:** UCB and variants , etc. $adaptive (\triangle - independent)$

UCB(ρ): UCB with exploration coefficient ρ

At time t+1, play an arm $\pi_{t+1} \in \{1,2\}$ according to

$$\pi_{t+1} \in \arg \max_{i \in \{1,2\}} \left(\bar{X}_i(t) + \sqrt{\frac{\rho \log t}{N_i(t)}} \right)$$

Here,

• $\bar{X}_i(t)$ denotes the empirical mean reward from arm *i* at time t^+ , i.e.,

$$ar{X}_i(t) := rac{\sum_{j=1}^{\mathcal{N}_i(t)} X_{i,j}}{\mathcal{N}_i(t)}.$$

2 $\rho = 2$ corresponds to classical UCB1.

Achievable regret in 2-MAB

• Instance-dependent bounds (Fixed Δ , large *n*) [Easy problems]:

$$\mathbb{E}R_n^{\pi} \leq \frac{C_1\rho\log n}{\Delta} + \frac{C_2\Delta}{\rho-1}$$
$$\mathbb{E}R_n^{\pi} = \Omega\left(\frac{\log n}{\Delta}\right)$$

for
$$\pi = \text{UCB}$$
 with $\rho > 1$.

(L.B. for any policy
$$\pi$$
).

E ▶.

.∋...>

Achievable regret in 2-MAB

• Instance-dependent bounds (Fixed Δ , large *n*) [Easy problems]:

$$\mathbb{E}R_n^{\pi} \leqslant \frac{C_1 \rho \log n}{\Delta} + \frac{C_2 \Delta}{\rho - 1} \qquad \text{for } \pi = \text{UCB with } \rho > 1.$$
$$\mathbb{E}R_n^{\pi} = \Omega\left(\frac{\log n}{\Delta}\right) \qquad (\text{L.B. for any policy } \pi).$$

- Minimax bounds (Fixed *n*, worst-case Δ) [Hard problems]:
 - $\mathbb{E}R_n^{\pi} \leq C_{\rho}\sqrt{n\log n} \qquad \text{for } \pi = \text{UCB with } \rho > 1.$ $\mathbb{E}R_n^{\pi} = \Omega\left(\sqrt{n}\right) \qquad (\text{L.B. for any policy } \pi).$

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Achievable regret in 2-MAB

• Instance-dependent bounds (Fixed Δ , large *n*) [Easy problems]:

$$\mathbb{E}R_n^{\pi} \leqslant \frac{C_1 \rho \log n}{\Delta} + \frac{C_2 \Delta}{\rho - 1} \qquad \text{for } \pi = \text{UCB with } \rho > 1.$$
$$\mathbb{E}R_n^{\pi} = \Omega\left(\frac{\log n}{\Delta}\right) \qquad (\text{L.B. for any policy } \pi).$$

• Minimax bounds (Fixed *n*, worst-case Δ) [Hard problems]:

$$\mathbb{E}R_n^{\pi} \leq C_{\rho}\sqrt{n\log n} \qquad \text{for } \pi = \text{UCB with } \rho > 1.$$

$$\mathbb{E}R_n^{\pi} = \Omega\left(\sqrt{n}\right) \qquad (\text{L.B. for any policy } \pi).$$

• Note: Thompson Sampling also has similar guarantees, to wit, $\mathcal{O}\left(\frac{\log n}{\Delta}\right)$ and $\mathcal{O}\left(\sqrt{n \log n}\right)$ respectively.

• How well do we understand the distribution of $\frac{N_1(n)}{n}$?

- ∢ ∃ ▶

- How well do we understand the distribution of $\frac{N_1(n)}{n}$?
- Existing results offer limited insight.
- E.g., if $\Delta \gg 0,$ then first-order optimal algorithms guarantee

$$rac{N_1(n)}{n} \Rightarrow 1 \ \, ext{as} \ \, n o \infty.$$

- How well do we understand the distribution of $\frac{N_1(n)}{n}$?
- Existing results offer limited insight.
- E.g., if $\Delta \gg 0$, then first-order optimal algorithms guarantee

$$rac{N_1(n)}{n} \Rightarrow 1 \ \, ext{as} \ \, n o \infty.$$

• But, what happens to $\frac{N_1(n)}{n}$ as $\Delta \to 0$?

• Why bother about $\frac{N_1(n)}{n}$ as $\Delta \to 0$?

- 4 伺 ト 4 ヨ ト 4 ヨ ト

- Why bother about $\frac{N_1(n)}{n}$ as $\Delta \to 0$?
- Consider a 2-MAB with $\Delta = 0$ and Bernoulli(0.5) rewards.

- Why bother about $\frac{N_1(n)}{n}$ as $\Delta \to 0$?
- Consider a 2-MAB with $\Delta = 0$ and Bernoulli(0.5) rewards.

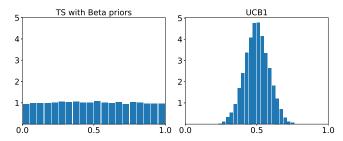


Figure: Empirical distribution of $\frac{N_1(n)}{n}$ after $n = 10^4$ pulls [$N = 10^5$ experiments].

- Why bother about $\frac{N_1(n)}{n}$ as $\Delta \to 0$?
- Consider a 2-MAB with $\Delta = 0$ and Bernoulli(0.5) rewards.

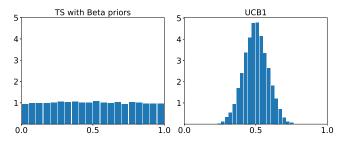


Figure: Empirical distribution of $\frac{N_1(n)}{n}$ after $n = 10^4$ pulls [$N = 10^5$ experiments].

- Fairness: "Similar" arms should get "similar" traffic w.h.p.
- Ex post inference: Clinical trials of 2 "similarly" efficacious vaccines!
- The Countable-armed Bandit problem [KZ'20].

TS-BP: Thompson Sampling with Beta priors, Bernoulli likelihoods

At time t + 1, play an arm $\pi_{t+1} \in \{1,2\}$ according to

$$\pi_{t+1} \in \arg \max_{i \in \{1,2\}} \mathcal{B}_{i,t}\left(S_i^t, F_i^t\right).$$

TS-BP: Thompson Sampling with Beta priors, Bernoulli likelihoods

At time t + 1, play an arm $\pi_{t+1} \in \{1,2\}$ according to

$$\pi_{t+1} \in \arg \max_{i \in \{1,2\}} \mathcal{B}_{i,t} \left(S_i^t, F_i^t \right).$$

[Theorem] "Instability" of TS-BP

In a 2-MAB with $\Delta = 0$, there exists a pair of instances (ν_1, ν_2) s.t.

• On
$$\nu_1$$
, $\frac{N_1(n)}{n} \Rightarrow \frac{1}{2}$ as $n \to \infty$.

• On ν_2 , $\frac{N_1(n)}{n} \Rightarrow$ Uniform on [0,1] as $n \to \infty$.

[Theorem] Sampling asymptotics for UCB with ho > 1

In a 2-MAB with gap Δ , the following holds as $n \to \infty$:

$$\frac{N_{1}(n)}{n} \Rightarrow \begin{cases} 1 & \text{if } \Delta = \omega \left(\sqrt{\frac{\log n}{n}} \right), \\ \lambda_{\rho}^{*}(\theta) & \text{if } \Delta \sim \sqrt{\frac{\theta \log n}{n}} \text{ for some fixed } \theta \ge 0, \\ \frac{1}{2} & \text{if } \Delta = o \left(\sqrt{\frac{\log n}{n}} \right). \end{cases}$$

 $\lambda_{\rho}^{*}(\theta)$ is deterministic and can be characterized in closed-form!

[Theorem] Sampling asymptotics for UCB with ho > 1

In a 2-MAB with gap Δ , the following holds as $n \to \infty$:

$$\frac{N_{1}(n)}{n} \Rightarrow \begin{cases} 1 & \text{if } \Delta = \omega \left(\sqrt{\frac{\log n}{n}} \right), \\ \lambda_{\rho}^{*}(\theta) & \text{if } \Delta \sim \sqrt{\frac{\theta \log n}{n}} \text{ for some fixed } \theta \ge 0, \\ \frac{1}{2} & \text{if } \Delta = o \left(\sqrt{\frac{\log n}{n}} \right). \end{cases}$$

 $\lambda^*_
ho(heta)$ is deterministic and can be characterized in closed-form!

Recall: Thompson Sampling may result in a non-degenerate limit!

[Theorem] Minimax regret of UCB with $\rho > 1$

In a 2-MAB, the worst-case regret of UCB follows the sharp asymptotic

$\mathbb{E}R_n^{\pi} \sim f(\rho)\sqrt{n\log n}.$

The constant $f(\rho)$ can be characterized in closed-form! (**Note:** The information-theoretic optimal minimax rate is $\Theta(\sqrt{n})$.)

[Theorem] Minimax regret of UCB with $\rho > 1$

In a 2-MAB, the worst-case regret of UCB follows the sharp asymptotic

$\mathbb{E}R_n^{\pi} \sim f(\rho)\sqrt{n\log n}.$

The constant $f(\rho)$ can be characterized in closed-form! (**Note:** The information-theoretic optimal minimax rate is $\Theta(\sqrt{n})$.)

Remark: Previous best result for UCB was $\mathcal{O}(\sqrt{n \log n})$ minimax regret.

- Information-theoretic hardest instances have $\Delta \simeq \frac{1}{\sqrt{n}}$.
- Analogous to the "heavy-traffic/QED" regime in queuing, where 1 traffic intensity $\approx \frac{1}{\sqrt{n}}$.
- The queuing problem admits well-known diffusion limits.
- Can similar results be established also for bandits?

[Theorem] Diffusion limit regret of UCB with $\rho > 1$

In a 2-MAB with gap $\Delta \sim \frac{c}{\sqrt{n}}$, the following holds under UCB as $n \to \infty$:

$$\left(\frac{R_{\lfloor nt \rfloor}^{\pi}}{\sqrt{n}}\right)_{t \in [0,1]} \Rightarrow \left(\frac{ct}{2} + \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}B(t)\right)_{t \in [0,1]}$$

where $\{\sigma_i^2 : i = 1, 2\}$ are the reward variances, and B(t) is a standard Brownian motion in \mathbb{R} .

[Theorem] Diffusion limit regret of UCB with $\rho > 1$

In a 2-MAB with gap $\Delta \sim \frac{c}{\sqrt{n}}$, the following holds under UCB as $n \to \infty$:

$$\left(\frac{R_{\lfloor nt \rfloor}^{\pi}}{\sqrt{n}}\right)_{t \in [0,1]} \Rightarrow \left(\frac{ct}{2} + \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}B(t)\right)_{t \in [0,1]}$$

where $\{\sigma_i^2 : i = 1, 2\}$ are the reward variances, and B(t) is a standard Brownian motion in \mathbb{R} .

Note: For Thompson Sampling, the diffusion limit is characterized by the solution(s) to a SDE ([Wager & Xu, 2021],[Fan & Glynn, 2021]).

- **[KZ'20]** A. Kalvit and A. Zeevi, "From Finite to Countable-armed Bandits," NeurIPS 2020.
- [Wager & Xu, 2021] S. Wager and K. Xu, "Diffusion Asymptotics for sequential experiments," arXiv preprint arXiv:2101.09855.
- [Fan & Glynn, 2021] L. Fan and P. Glynn, "Diffusion Approximations for Thompson Sampling," arXiv preprint arXiv:2105.09232.