
Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Noisy Recurrent Neural Networks

35th Conference on Neural Information Processing Systems (NeurIPS 2021)

1 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Recurrent Neural Networks (RNNs)

Networks of neurons with feedback connections designed to deal with sequential data

Can use their hidden state (memory) to process variable length sequences of inputs

Universal approximators of dynamical systems

2 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Recurrent Neural Networks (RNNs)

Networks of neurons with feedback connections designed to deal with sequential data

Can use their hidden state (memory) to process variable length sequences of inputs

Universal approximators of dynamical systems

3 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Recurrent Neural Networks (RNNs)

Networks of neurons with feedback connections designed to deal with sequential data

Can use their hidden state (memory) to process variable length sequences of inputs

Universal approximators of dynamical systems

4 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Recurrent Neural Networks (RNNs)

Networks of neurons with feedback connections designed to deal with sequential data

Can use their hidden state (memory) to process variable length sequences of inputs

Universal approximators of dynamical systems

5 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

A Supervised Learning Framework for RNNs

Data: {(x(i), c(i))}i=1,...,N

x(i) := (x
(i)
t )t=0,1,...,T−1 = input sequence, c(i) = class label

Model (RNN): parametric non-autonomous discrete-time dynamical system

h
(i)
t+1 = a(h

(i)
t , x

(i)
t ), t = 0, . . . ,T − 1, (1)

y
(i)
T = g(h

(i)
T ) (2)

h = hidden state, y = output variable

– Example (vanilla):

a(h, x) = tanh(Whh + Wxx + b), g(h) = Wyh

θ := (Wh,Wx , b,Wy ) = learnable parameters

Loss: L(θ) = 1
N

∑N
i=1 l(y

(i)
T , c(i))

Optimization: θ∗ = arg minθ L(θ)

6 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

A Supervised Learning Framework for RNNs

Data: {(x(i), c(i))}i=1,...,N

x(i) := (x
(i)
t )t=0,1,...,T−1 = input sequence, c(i) = class label

Model (RNN): parametric non-autonomous discrete-time dynamical system

h
(i)
t+1 = a(h

(i)
t , x

(i)
t ), t = 0, . . . ,T − 1, (1)

y
(i)
T = g(h

(i)
T ) (2)

h = hidden state, y = output variable

– Example (vanilla):

a(h, x) = tanh(Whh + Wxx + b), g(h) = Wyh

θ := (Wh,Wx , b,Wy ) = learnable parameters

Loss: L(θ) = 1
N

∑N
i=1 l(y

(i)
T , c(i))

Optimization: θ∗ = arg minθ L(θ)

7 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

A Supervised Learning Framework for RNNs

Data: {(x(i), c(i))}i=1,...,N

x(i) := (x
(i)
t )t=0,1,...,T−1 = input sequence, c(i) = class label

Model (RNN): parametric non-autonomous discrete-time dynamical system

h
(i)
t+1 = a(h

(i)
t , x

(i)
t ), t = 0, . . . ,T − 1, (1)

y
(i)
T = g(h

(i)
T ) (2)

h = hidden state, y = output variable

– Example (vanilla):

a(h, x) = tanh(Whh + Wxx + b), g(h) = Wyh

θ := (Wh,Wx , b,Wy ) = learnable parameters

Loss: L(θ) = 1
N

∑N
i=1 l(y

(i)
T , c(i))

Optimization: θ∗ = arg minθ L(θ)

8 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

A Supervised Learning Framework for RNNs

Data: {(x(i), c(i))}i=1,...,N

x(i) := (x
(i)
t )t=0,1,...,T−1 = input sequence, c(i) = class label

Model (RNN): parametric non-autonomous discrete-time dynamical system

h
(i)
t+1 = a(h

(i)
t , x

(i)
t ), t = 0, . . . ,T − 1, (1)

y
(i)
T = g(h

(i)
T ) (2)

h = hidden state, y = output variable

– Example (vanilla):

a(h, x) = tanh(Whh + Wxx + b), g(h) = Wyh

θ := (Wh,Wx , b,Wy ) = learnable parameters

Loss: L(θ) = 1
N

∑N
i=1 l(y

(i)
T , c(i))

Optimization: θ∗ = arg minθ L(θ)

9 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

A Supervised Learning Framework for RNNs

Data: {(x(i), c(i))}i=1,...,N

x(i) := (x
(i)
t )t=0,1,...,T−1 = input sequence, c(i) = class label

Model (RNN): parametric non-autonomous discrete-time dynamical system

h
(i)
t+1 = a(h

(i)
t , x

(i)
t ), t = 0, . . . ,T − 1, (1)

y
(i)
T = g(h

(i)
T ) (2)

h = hidden state, y = output variable

– Example (vanilla):

a(h, x) = tanh(Whh + Wxx + b), g(h) = Wyh

θ := (Wh,Wx , b,Wy ) = learnable parameters

Loss: L(θ) = 1
N

∑N
i=1 l(y

(i)
T , c(i))

Optimization: θ∗ = arg minθ L(θ)

10 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

From Good Old RNNs to SDEs

Two steps:

(1) Adding leaky integrator:
ht+1 = αht + βa(ht , xt) (3)

(2) Injecting noise:
ht+1 = αht + βa(ht , xt) + θξt , α, β, θ > 0, (4)

where the ξt are i.i.d. random vectors (e.g., zero mean Gaussian)

SDE intepretation. Setting α = 1− γ∆t, β = ∆t, θ =
√

∆tσ and ξt = i.i.d. standard Gaussian,
we see that the resulting eq. (4) is the Euler-Mayurama approximation of the following SDE:

dht = −γhtdt + a(ht , xt)dt + σdBt , t ∈ [0,T ], (5)

where (Bt)t≥0 is a Brownian motion (continuous-time process with independent Gaussian
increments)

11 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

From Good Old RNNs to SDEs

Two steps:

(1) Adding leaky integrator:
ht+1 = αht + βa(ht , xt) (3)

(2) Injecting noise:
ht+1 = αht + βa(ht , xt) + θξt , α, β, θ > 0, (4)

where the ξt are i.i.d. random vectors (e.g., zero mean Gaussian)

SDE intepretation. Setting α = 1− γ∆t, β = ∆t, θ =
√

∆tσ and ξt = i.i.d. standard Gaussian,
we see that the resulting eq. (4) is the Euler-Mayurama approximation of the following SDE:

dht = −γhtdt + a(ht , xt)dt + σdBt , t ∈ [0,T ], (5)

where (Bt)t≥0 is a Brownian motion (continuous-time process with independent Gaussian
increments)

12 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

From Good Old RNNs to SDEs

Two steps:

(1) Adding leaky integrator:
ht+1 = αht + βa(ht , xt) (3)

(2) Injecting noise:
ht+1 = αht + βa(ht , xt) + θξt , α, β, θ > 0, (4)

where the ξt are i.i.d. random vectors (e.g., zero mean Gaussian)

SDE intepretation. Setting α = 1− γ∆t, β = ∆t, θ =
√

∆tσ and ξt = i.i.d. standard Gaussian,
we see that the resulting eq. (4) is the Euler-Mayurama approximation of the following SDE:

dht = −γhtdt + a(ht , xt)dt + σdBt , t ∈ [0,T ], (5)

where (Bt)t≥0 is a Brownian motion (continuous-time process with independent Gaussian
increments)

13 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

From Good Old RNNs to SDEs

Two steps:

(1) Adding leaky integrator:
ht+1 = αht + βa(ht , xt) (3)

(2) Injecting noise:
ht+1 = αht + βa(ht , xt) + θξt , α, β, θ > 0, (4)

where the ξt are i.i.d. random vectors (e.g., zero mean Gaussian)

SDE intepretation. Setting α = 1− γ∆t, β = ∆t, θ =
√

∆tσ and ξt = i.i.d. standard Gaussian,
we see that the resulting eq. (4) is the Euler-Mayurama approximation of the following SDE:

dht = −γhtdt + a(ht , xt)dt + σdBt , t ∈ [0,T ], (5)

where (Bt)t≥0 is a Brownian motion (continuous-time process with independent Gaussian
increments)

14 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Noisy Recurrent Neural Networks (NRNNs)

More generally, we consider the following (Itô) SDE model for RNN.

Let x ∈ C([0,T ],Rdx ) be an input signal.

Continuous-Time NRNNs

dht = f (ht , xt)dt + σ(ht , xt)dBt , yt = Vht , (6)

where σ : Rdh × Rdx → Rdh×r and (Bt)t≥0 is an r -dimensional Brownian motion.

The functions f and σ are referred to as the drift and diffusion coefficients, respectively.

Intuitively, (6) amounts to a noisy perturbation of the corresponding deterministic CT-RNN

To guarantee the existence of a unique solution to (6), in the sequel, we assume that
{f (·, xt)}t∈[0,T ] and {σ(·, xt)}t∈[0,T ] are uniformly Lipschitz continuous, and t 7→ f (h, xt),

t 7→ σ(h, xt) are bounded in t ∈ [0,T ] for each fixed h ∈ Rdh

15 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Noisy Recurrent Neural Networks (NRNNs)

More generally, we consider the following (Itô) SDE model for RNN.

Let x ∈ C([0,T ],Rdx ) be an input signal.

Continuous-Time NRNNs

dht = f (ht , xt)dt + σ(ht , xt)dBt , yt = Vht , (6)

where σ : Rdh × Rdx → Rdh×r and (Bt)t≥0 is an r -dimensional Brownian motion.

The functions f and σ are referred to as the drift and diffusion coefficients, respectively.

Intuitively, (6) amounts to a noisy perturbation of the corresponding deterministic CT-RNN

To guarantee the existence of a unique solution to (6), in the sequel, we assume that
{f (·, xt)}t∈[0,T ] and {σ(·, xt)}t∈[0,T ] are uniformly Lipschitz continuous, and t 7→ f (h, xt),

t 7→ σ(h, xt) are bounded in t ∈ [0,T ] for each fixed h ∈ Rdh

16 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Noisy Recurrent Neural Networks (NRNNs)

More generally, we consider the following (Itô) SDE model for RNN.

Let x ∈ C([0,T ],Rdx ) be an input signal.

Continuous-Time NRNNs

dht = f (ht , xt)dt + σ(ht , xt)dBt , yt = Vht , (6)

where σ : Rdh × Rdx → Rdh×r and (Bt)t≥0 is an r -dimensional Brownian motion.

The functions f and σ are referred to as the drift and diffusion coefficients, respectively.

Intuitively, (6) amounts to a noisy perturbation of the corresponding deterministic CT-RNN

To guarantee the existence of a unique solution to (6), in the sequel, we assume that
{f (·, xt)}t∈[0,T ] and {σ(·, xt)}t∈[0,T ] are uniformly Lipschitz continuous, and t 7→ f (h, xt),

t 7→ σ(h, xt) are bounded in t ∈ [0,T ] for each fixed h ∈ Rdh

17 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Noisy Recurrent Neural Networks (NRNNs)

More generally, we consider the following (Itô) SDE model for RNN.

Let x ∈ C([0,T ],Rdx ) be an input signal.

Continuous-Time NRNNs

dht = f (ht , xt)dt + σ(ht , xt)dBt , yt = Vht , (6)

where σ : Rdh × Rdx → Rdh×r and (Bt)t≥0 is an r -dimensional Brownian motion.

The functions f and σ are referred to as the drift and diffusion coefficients, respectively.

Intuitively, (6) amounts to a noisy perturbation of the corresponding deterministic CT-RNN

To guarantee the existence of a unique solution to (6), in the sequel, we assume that
{f (·, xt)}t∈[0,T ] and {σ(·, xt)}t∈[0,T ] are uniformly Lipschitz continuous, and t 7→ f (h, xt),

t 7→ σ(h, xt) are bounded in t ∈ [0,T ] for each fixed h ∈ Rdh

18 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Benefits of Continuous-Time Formulation

(Design) Sampling from these RNNs gives us discrete-time RNNs =⇒ guided principle and
flexibility in designing RNN architectures

(Modeling) In situations where the input data are generated by continuous-time dynamical
systems, it is desirable to consider learning models which are also continuous in time

(Analysis) A rich set of tools and techniques from the continuous-time theory can be
borrowed to simplify analysis and to gain useful insights

19 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Benefits of Continuous-Time Formulation

(Design) Sampling from these RNNs gives us discrete-time RNNs =⇒ guided principle and
flexibility in designing RNN architectures

(Modeling) In situations where the input data are generated by continuous-time dynamical
systems, it is desirable to consider learning models which are also continuous in time

(Analysis) A rich set of tools and techniques from the continuous-time theory can be
borrowed to simplify analysis and to gain useful insights

20 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Benefits of Continuous-Time Formulation

(Design) Sampling from these RNNs gives us discrete-time RNNs =⇒ guided principle and
flexibility in designing RNN architectures

(Modeling) In situations where the input data are generated by continuous-time dynamical
systems, it is desirable to consider learning models which are also continuous in time

(Analysis) A rich set of tools and techniques from the continuous-time theory can be
borrowed to simplify analysis and to gain useful insights

21 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Choice of Drift and Diffusion Coefficient

f (h, x) = Ah + a(Wh + Ux + b), (7)

where a : R→ R is a Lipschitz continuous scalar activation function extended to act on
vectors pointwise, A,W ∈ Rdh×dh , U ∈ Rdh×dx and b ∈ Rdh

Drift = a linear component + a Lipschitz nonlinearity

σ(h, x) = ε(σ1I + σ2diag(f (h, x))), (8)

where ε > 0 is small, and σ1 ≥ 0 and σ2 ≥ 0 are tunable parameters

Diffusion = additive + a multiplicative noise

One can set ε = 0 at inference time
=⇒ noise injections in NRNNs can be viewed as a stochastic learning strategy

22 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Choice of Drift and Diffusion Coefficient

f (h, x) = Ah + a(Wh + Ux + b), (7)

where a : R→ R is a Lipschitz continuous scalar activation function extended to act on
vectors pointwise, A,W ∈ Rdh×dh , U ∈ Rdh×dx and b ∈ Rdh

Drift = a linear component + a Lipschitz nonlinearity

σ(h, x) = ε(σ1I + σ2diag(f (h, x))), (8)

where ε > 0 is small, and σ1 ≥ 0 and σ2 ≥ 0 are tunable parameters

Diffusion = additive + a multiplicative noise

One can set ε = 0 at inference time
=⇒ noise injections in NRNNs can be viewed as a stochastic learning strategy

23 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Choice of Drift and Diffusion Coefficient

f (h, x) = Ah + a(Wh + Ux + b), (7)

where a : R→ R is a Lipschitz continuous scalar activation function extended to act on
vectors pointwise, A,W ∈ Rdh×dh , U ∈ Rdh×dx and b ∈ Rdh

Drift = a linear component + a Lipschitz nonlinearity

σ(h, x) = ε(σ1I + σ2diag(f (h, x))), (8)

where ε > 0 is small, and σ1 ≥ 0 and σ2 ≥ 0 are tunable parameters

Diffusion = additive + a multiplicative noise

One can set ε = 0 at inference time
=⇒ noise injections in NRNNs can be viewed as a stochastic learning strategy

24 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

From Continuous-Time to Discrete-Time NRNNs

We consider explicit Euler-Maruyama (E-M) integrators, which are the stochastic analogues of
Euler-type integration schemes for ODEs.

Let 0 = t0 < t1 < · · · < tM = T be a partition of the interval [0,T ]. Denote
δm := tm+1 − tm for each m = 0, 1, . . . ,M − 1, and δ := (δm)

The E-M scheme provides a family (parametrized by δ) of approximations to the solution of
the SDE in (6):

Discrete-Time NRNNs

hδm+1 = hδm + f (hδm, x̂m)δm + σ(hδm, x̂m)
√
δmξm, (9)

for m = 0, 1, . . . ,M − 1, where (x̂m)m=0,...,M−1 is a given sequential data, the ξm ∼ N (0, I )

are independent r -dimensional standard normal random vectors, and hδ0 = h0

25 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

From Continuous-Time to Discrete-Time NRNNs

We consider explicit Euler-Maruyama (E-M) integrators, which are the stochastic analogues of
Euler-type integration schemes for ODEs.

Let 0 = t0 < t1 < · · · < tM = T be a partition of the interval [0,T ]. Denote
δm := tm+1 − tm for each m = 0, 1, . . . ,M − 1, and δ := (δm)

The E-M scheme provides a family (parametrized by δ) of approximations to the solution of
the SDE in (6):

Discrete-Time NRNNs

hδm+1 = hδm + f (hδm, x̂m)δm + σ(hδm, x̂m)
√
δmξm, (9)

for m = 0, 1, . . . ,M − 1, where (x̂m)m=0,...,M−1 is a given sequential data, the ξm ∼ N (0, I )

are independent r -dimensional standard normal random vectors, and hδ0 = h0

26 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Main Results (Theory)

We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer
induced by the noise injection through a perturbation analysis in the small noise regime

It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss
function according to the noise level, thereby promoting flatter minima and biasing towards
models with more stable dynamics

0.02
0.00

0.02
0.02

0.00
0.02

100

200

300

0.02
0.00

0.02 0.02
0.00

0.02

100

200

300

Figure: Hessian loss landscapes for deterministic (left) and noisy (right) model

We show that, in this small noise regime, NRNNs promote classifiers with large classification
margin, an attribute linked to improved model robustness

We also provide sufficient conditions for stability of the SDE, showing that noise injection
can improve stability during training

27 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Main Results (Theory)

We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer
induced by the noise injection through a perturbation analysis in the small noise regime

It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss
function according to the noise level, thereby promoting flatter minima and biasing towards
models with more stable dynamics

0.02
0.00

0.02
0.02

0.00
0.02

100

200

300

0.02
0.00

0.02 0.02
0.00

0.02

100

200

300

Figure: Hessian loss landscapes for deterministic (left) and noisy (right) model

We show that, in this small noise regime, NRNNs promote classifiers with large classification
margin, an attribute linked to improved model robustness

We also provide sufficient conditions for stability of the SDE, showing that noise injection
can improve stability during training

28 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Main Results (Theory)

We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer
induced by the noise injection through a perturbation analysis in the small noise regime

It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss
function according to the noise level, thereby promoting flatter minima and biasing towards
models with more stable dynamics

0.02
0.00

0.02
0.02

0.00
0.02

100

200

300

0.02
0.00

0.02 0.02
0.00

0.02

100

200

300

Figure: Hessian loss landscapes for deterministic (left) and noisy (right) model

We show that, in this small noise regime, NRNNs promote classifiers with large classification
margin, an attribute linked to improved model robustness

We also provide sufficient conditions for stability of the SDE, showing that noise injection
can improve stability during training

29 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Main Results (Theory)

We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer
induced by the noise injection through a perturbation analysis in the small noise regime

It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss
function according to the noise level, thereby promoting flatter minima and biasing towards
models with more stable dynamics

0.02
0.00

0.02
0.02

0.00
0.02

100

200

300

0.02
0.00

0.02 0.02
0.00

0.02

100

200

300

Figure: Hessian loss landscapes for deterministic (left) and noisy (right) model

We show that, in this small noise regime, NRNNs promote classifiers with large classification
margin, an attribute linked to improved model robustness

We also provide sufficient conditions for stability of the SDE, showing that noise injection
can improve stability during training

30 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Main Results (Theory)

We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer
induced by the noise injection through a perturbation analysis in the small noise regime

It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss
function according to the noise level, thereby promoting flatter minima and biasing towards
models with more stable dynamics

0.02
0.00

0.02
0.02

0.00
0.02

100

200

300

0.02
0.00

0.02 0.02
0.00

0.02

100

200

300

Figure: Hessian loss landscapes for deterministic (left) and noisy (right) model

We show that, in this small noise regime, NRNNs promote classifiers with large classification
margin, an attribute linked to improved model robustness

We also provide sufficient conditions for stability of the SDE, showing that noise injection
can improve stability during training

31 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Main Results (Experiments)

We demonstrate on benchmark data sets that NRNN classifiers are more robust to data
perturbations when compared to other recurrent models, while retaining SOTA performance for
clean data

Table: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the ordered MNIST task.

Name clean σ = 0.1 σ = 0.2 σ = 0.3 α = 0.03 α = 0.05 α = 0.1

Antisymmetric RNN (Chang et. al., 2019) 97.5% 45.7% 22.3% 17.0% 77.1% 63.9% 42.6%
CoRNN (Rusch et. al., 2021) 99.1% 96.6% 61.9% 32.1% 95.6% 88.1% 58.9%
Exponential RNN (Lezcano et. al., 2019) 96.7% 86.7% 58.1% 33.3% 83.6% 70.7% 43.4%
Lipschitz RNN (Erichson et. al., 2020) 99.2% 98.4% 78.9% 47.1% 97.6% 93.4% 73.5%
NRNN (mult. noise: 0.02 / add. noise: 0.02) 99.1% 98.9% 88.4% 62.9% 98.3% 95.6% 78.7%
NRNN (mult. noise: 0.02 / add. noise: 0.05) 99.1% 98.9% 92.2% 73.5% 98.5% 97.1% 85.5%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.2

0.4

0.6

0.8

1.0 Noisy RNN (0.02/0.05)
Noisy RNN (0.02/0.02)
Lipschitz RNN
Antisymmetric RNN
coRNN
expRNN

te
st

a
cc

u
ra

cy

amount of noise

(a) White noise perturbations.

0.00 0.05 0.10 0.15 0.20 0.250.2

0.4

0.6

0.8

1.0

amount of noise

(b) Salt and pepper perturbations.

Figure: Test accuracy for the ordered MNIST task as a function of the strength of input
perturbations.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.2

0.4

0.6

0.8

1.0

te
st

a
cc

u
ra

cy

amount of noise

(a) White noise perturbations.

0.00 0.05 0.10 0.15 0.20 0.250.2

0.4

0.6

0.8

1.0

Noisy RNN (0.02/0.05)
Noisy RNN (0.02/0.02)
Lipschitz RNN
Antisymmetric RNN
coRNN
expRNN

amount of noise

(b) Salt and pepper perturbations.

Figure: Test accuracy for the permuted MNIST task as a function of the strength of input
perturbations (the colored bands indicate ±1 std deviation around the average performance).

32 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Main Results (Experiments)

We demonstrate on benchmark data sets that NRNN classifiers are more robust to data
perturbations when compared to other recurrent models, while retaining SOTA performance for
clean data

Table: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the ordered MNIST task.

Name clean σ = 0.1 σ = 0.2 σ = 0.3 α = 0.03 α = 0.05 α = 0.1

Antisymmetric RNN (Chang et. al., 2019) 97.5% 45.7% 22.3% 17.0% 77.1% 63.9% 42.6%
CoRNN (Rusch et. al., 2021) 99.1% 96.6% 61.9% 32.1% 95.6% 88.1% 58.9%
Exponential RNN (Lezcano et. al., 2019) 96.7% 86.7% 58.1% 33.3% 83.6% 70.7% 43.4%
Lipschitz RNN (Erichson et. al., 2020) 99.2% 98.4% 78.9% 47.1% 97.6% 93.4% 73.5%
NRNN (mult. noise: 0.02 / add. noise: 0.02) 99.1% 98.9% 88.4% 62.9% 98.3% 95.6% 78.7%
NRNN (mult. noise: 0.02 / add. noise: 0.05) 99.1% 98.9% 92.2% 73.5% 98.5% 97.1% 85.5%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.2

0.4

0.6

0.8

1.0 Noisy RNN (0.02/0.05)
Noisy RNN (0.02/0.02)
Lipschitz RNN
Antisymmetric RNN
coRNN
expRNN

te
st

a
cc

u
ra

cy

amount of noise

(a) White noise perturbations.

0.00 0.05 0.10 0.15 0.20 0.250.2

0.4

0.6

0.8

1.0

amount of noise

(b) Salt and pepper perturbations.

Figure: Test accuracy for the ordered MNIST task as a function of the strength of input
perturbations.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.2

0.4

0.6

0.8

1.0

te
st

a
cc

u
ra

cy

amount of noise

(a) White noise perturbations.

0.00 0.05 0.10 0.15 0.20 0.250.2

0.4

0.6

0.8

1.0

Noisy RNN (0.02/0.05)
Noisy RNN (0.02/0.02)
Lipschitz RNN
Antisymmetric RNN
coRNN
expRNN

amount of noise

(b) Salt and pepper perturbations.

Figure: Test accuracy for the permuted MNIST task as a function of the strength of input
perturbations (the colored bands indicate ±1 std deviation around the average performance).

33 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Main Results (Experiments)

We demonstrate on benchmark data sets that NRNN classifiers are more robust to data
perturbations when compared to other recurrent models, while retaining SOTA performance for
clean data

Table: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the ordered MNIST task.

Name clean σ = 0.1 σ = 0.2 σ = 0.3 α = 0.03 α = 0.05 α = 0.1

Antisymmetric RNN (Chang et. al., 2019) 97.5% 45.7% 22.3% 17.0% 77.1% 63.9% 42.6%
CoRNN (Rusch et. al., 2021) 99.1% 96.6% 61.9% 32.1% 95.6% 88.1% 58.9%
Exponential RNN (Lezcano et. al., 2019) 96.7% 86.7% 58.1% 33.3% 83.6% 70.7% 43.4%
Lipschitz RNN (Erichson et. al., 2020) 99.2% 98.4% 78.9% 47.1% 97.6% 93.4% 73.5%
NRNN (mult. noise: 0.02 / add. noise: 0.02) 99.1% 98.9% 88.4% 62.9% 98.3% 95.6% 78.7%
NRNN (mult. noise: 0.02 / add. noise: 0.05) 99.1% 98.9% 92.2% 73.5% 98.5% 97.1% 85.5%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.2

0.4

0.6

0.8

1.0 Noisy RNN (0.02/0.05)
Noisy RNN (0.02/0.02)
Lipschitz RNN
Antisymmetric RNN
coRNN
expRNN

te
st

a
cc

u
ra

cy

amount of noise

(a) White noise perturbations.

0.00 0.05 0.10 0.15 0.20 0.250.2

0.4

0.6

0.8

1.0

amount of noise

(b) Salt and pepper perturbations.

Figure: Test accuracy for the ordered MNIST task as a function of the strength of input
perturbations.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.2

0.4

0.6

0.8

1.0

te
st

a
cc

u
ra

cy

amount of noise

(a) White noise perturbations.

0.00 0.05 0.10 0.15 0.20 0.250.2

0.4

0.6

0.8

1.0

Noisy RNN (0.02/0.05)
Noisy RNN (0.02/0.02)
Lipschitz RNN
Antisymmetric RNN
coRNN
expRNN

amount of noise

(b) Salt and pepper perturbations.

Figure: Test accuracy for the permuted MNIST task as a function of the strength of input
perturbations (the colored bands indicate ±1 std deviation around the average performance).

34 / 38



Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Conclusion

Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of learning models against data perturbations

Within the framework of SDEs, we study RNNs trained by injecting noise into the hidden
states and the implicit regularization effects of general noise injection schemes, showing that
noise injection promotes classifiers with large classification margin

Our empirical results are in agreement with our theory and its implications, finding that
NRNN classifiers achieve superior robustness to input perturbations

References

Paper: arXiv:2102.04877
Code: https://github.com/erichson/NoisyRNN

35 / 38

https://github.com/erichson/NoisyRNN


Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Conclusion

Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of learning models against data perturbations

Within the framework of SDEs, we study RNNs trained by injecting noise into the hidden
states and the implicit regularization effects of general noise injection schemes, showing that
noise injection promotes classifiers with large classification margin

Our empirical results are in agreement with our theory and its implications, finding that
NRNN classifiers achieve superior robustness to input perturbations

References

Paper: arXiv:2102.04877
Code: https://github.com/erichson/NoisyRNN

36 / 38

https://github.com/erichson/NoisyRNN


Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Conclusion

Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of learning models against data perturbations

Within the framework of SDEs, we study RNNs trained by injecting noise into the hidden
states and the implicit regularization effects of general noise injection schemes, showing that
noise injection promotes classifiers with large classification margin

Our empirical results are in agreement with our theory and its implications, finding that
NRNN classifiers achieve superior robustness to input perturbations

References

Paper: arXiv:2102.04877
Code: https://github.com/erichson/NoisyRNN

37 / 38

https://github.com/erichson/NoisyRNN


Intro Noisy RNNs Main Results Main Results (Experiments) Conclusion

Conclusion

Noise injection can be viewed as a stochastic learning strategy used to improve robustness
of learning models against data perturbations

Within the framework of SDEs, we study RNNs trained by injecting noise into the hidden
states and the implicit regularization effects of general noise injection schemes, showing that
noise injection promotes classifiers with large classification margin

Our empirical results are in agreement with our theory and its implications, finding that
NRNN classifiers achieve superior robustness to input perturbations

References

Paper: arXiv:2102.04877
Code: https://github.com/erichson/NoisyRNN

38 / 38

https://github.com/erichson/NoisyRNN

	Intro
	Noisy RNNs
	Main Results
	Main Results (Experiments)
	Conclusion

