Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0

Noisy Recurrent Neural Networks

35th Conference on Neural Information Processing Systems (NeurIPS 2021)

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Recurrent	Neural Network	s (RNNs)		

• Networks of neurons with feedback connections designed to deal with sequential data

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Recurrent	Neural Networ	rks (RNNs)		

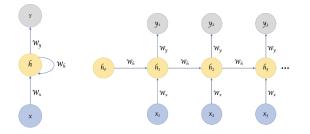
- Networks of neurons with feedback connections designed to deal with sequential data
- Can use their hidden state (memory) to process variable length sequences of inputs

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Recurrent	t Neural Netwo	rks (RNNs)		

- Networks of neurons with feedback connections designed to deal with sequential data
- Can use their hidden state (memory) to process variable length sequences of inputs
- Universal approximators of dynamical systems

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Recurrent	Neural Networ	rks (RNNs)		

- Networks of neurons with feedback connections designed to deal with sequential data
- Can use their hidden state (memory) to process variable length sequences of inputs
- Universal approximators of dynamical systems



Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0

• Data:
$$\{(x^{(i)}, c^{(i)})\}_{i=1,...,N}$$

 $x^{(i)} := (x_t^{(i)})_{t=0,1,...,T-1} = \text{input sequence, } c^{(i)} = \text{class labe}$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0

- Data: $\{(x^{(i)}, c^{(i)})\}_{i=1,...,N}$ $x^{(i)} := (x_t^{(i)})_{t=0,1,...,T-1} = \text{input sequence, } c^{(i)} = \text{class label}$
- Model (RNN): parametric non-autonomous discrete-time dynamical system

$$h_{t+1}^{(i)} = a(h_t^{(i)}, x_t^{(i)}), \ t = 0, \dots, T-1,$$
 (1)

$$\gamma_T^{(i)} = g(h_T^{(i)}) \tag{2}$$

h = hidden state, y = output variable

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0

- Data: $\{(x^{(i)}, c^{(i)})\}_{i=1,...,N}$ $x^{(i)} := (x_t^{(i)})_{t=0,1,...,T-1} = \text{input sequence, } c^{(i)} = \text{class label}$
- Model (RNN): parametric non-autonomous discrete-time dynamical system

$$h_{t+1}^{(i)} = a(h_t^{(i)}, x_t^{(i)}), \ t = 0, \dots, T-1,$$
 (1)

$$v_T^{(i)} = g(h_T^{(i)})$$
 (2)

h = hidden state, y = output variable

- Example (vanilla):

$$g(h,x) = \operatorname{tanh}(W_h h + W_x x + b), \quad g(h) = W_y h$$

 $\boldsymbol{\theta} := (W_h, W_x, b, W_y) =$ learnable parameters

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0

- Data: $\{(x^{(i)}, c^{(i)})\}_{i=1,...,N}$ $x^{(i)} := (x_t^{(i)})_{t=0,1,...,T-1} = \text{input sequence, } c^{(i)} = \text{class label}$
- Model (RNN): parametric non-autonomous discrete-time dynamical system

$$h_{t+1}^{(i)} = a(h_t^{(i)}, x_t^{(i)}), \ t = 0, \dots, T - 1,$$
(1)

$$v_T^{(i)} = g(h_T^{(i)})$$
 (2)

h = hidden state, y = output variable

- Example (vanilla):

$$g(h,x) = \tanh(W_h h + W_x x + b), \quad g(h) = W_y h$$

 $\boldsymbol{\theta} := (W_h, W_x, b, W_y) =$ learnable parameters

• Loss: $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} l(y_T^{(i)}, c^{(i)})$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0

- Data: $\{(x^{(i)}, c^{(i)})\}_{i=1,...,N}$ $x^{(i)} := (x_t^{(i)})_{t=0,1,...,T-1} = \text{input sequence, } c^{(i)} = \text{class label}$
- Model (RNN): parametric non-autonomous discrete-time dynamical system

$$h_{t+1}^{(i)} = a(h_t^{(i)}, x_t^{(i)}), \ t = 0, \dots, T - 1,$$
(1)

$$v_T^{(i)} = g(h_T^{(i)})$$
 (2)

h = hidden state, y = output variable

- Example (vanilla):

$$g(h,x) = \operatorname{tanh}(W_hh + W_xx + b), \quad g(h) = W_yh$$

 $\boldsymbol{\theta} := (W_h, W_x, b, W_y) =$ learnable parameters

- Loss: $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} l(y_T^{(i)}, c^{(i)})$
- Optimization: $\theta^* = \arg \min_{\theta} L(\theta)$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
From Goo	d Old RNNs to	o SDEs		

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のへで 11/38

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
From G	ood Old RNNs t	o SDEs		

(1) Adding leaky integrator:

$$h_{t+1} = \alpha h_t + \beta a(h_t, x_t) \tag{3}$$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
From G	ood Old RNNs te	o SDEs		

(1) Adding leaky integrator:

$$h_{t+1} = \alpha h_t + \beta a(h_t, x_t) \tag{3}$$

(2) Injecting noise:

$$h_{t+1} = \alpha h_t + \beta a(h_t, x_t) + \theta \xi_t, \quad \alpha, \beta, \theta > 0,$$
(4)

where the ξ_t are i.i.d. random vectors (e.g., zero mean Gaussian)

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
From G	ood Old RNNs t	o SDEs		

(1) Adding leaky integrator:

$$h_{t+1} = \alpha h_t + \beta a(h_t, x_t) \tag{3}$$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

14 / 38

(2) Injecting noise:

$$h_{t+1} = \alpha h_t + \beta a(h_t, x_t) + \theta \xi_t, \quad \alpha, \beta, \theta > 0,$$
(4)

where the ξ_t are i.i.d. random vectors (e.g., zero mean Gaussian)

SDE intepretation. Setting $\alpha = 1 - \gamma \Delta t$, $\beta = \Delta t$, $\theta = \sqrt{\Delta t} \sigma$ and $\xi_t = i.i.d.$ standard Gaussian, we see that the resulting eq. (4) is the Euler-Mayurama approximation of the following SDE:

$$dh_t = -\gamma h_t dt + a(h_t, x_t) dt + \sigma dB_t, \quad t \in [0, T],$$
(5)

where $(B_t)_{t \ge 0}$ is a Brownian motion (continuous-time process with independent Gaussian increments)

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Noisy	Recurrent Neural	Networks (NRNN	ls)	

Let $x \in C([0, T], \mathbb{R}^{d_x})$ be an input signal.

Continuous-Time NRNNs

$$dh_t = f(h_t, x_t)dt + \sigma(h_t, x_t)dB_t, \qquad y_t = Vh_t,$$
(6)

where $\sigma: \mathbb{R}^{d_h} \times \mathbb{R}^{d_x} \to \mathbb{R}^{d_h \times r}$ and $(B_t)_{t \ge 0}$ is an *r*-dimensional Brownian motion.

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	•000	0	0	0
Noisy	Recurrent Neural	Networks (NRNN	s)	

Let $x \in C([0, T], \mathbb{R}^{d_x})$ be an input signal.

Continuous-Time NRNNs

$$dh_t = f(h_t, x_t)dt + \sigma(h_t, x_t)dB_t, \qquad y_t = Vh_t,$$
(6)

where $\sigma : \mathbb{R}^{d_h} \times \mathbb{R}^{d_x} \to \mathbb{R}^{d_h \times r}$ and $(B_t)_{t \ge 0}$ is an *r*-dimensional Brownian motion.

The functions f and σ are referred to as the *drift* and *diffusion* coefficients, respectively.

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Noisy	Recurrent Neural	Networks (NRNNs	5)	

Let $x \in C([0, T], \mathbb{R}^{d_x})$ be an input signal.

Continuous-Time NRNNs

$$dh_t = f(h_t, x_t)dt + \sigma(h_t, x_t)dB_t, \qquad y_t = Vh_t, \tag{6}$$

where $\sigma : \mathbb{R}^{d_h} \times \mathbb{R}^{d_k} \to \mathbb{R}^{d_h \times r}$ and $(B_t)_{t \ge 0}$ is an *r*-dimensional Brownian motion.

The functions f and σ are referred to as the *drift* and *diffusion* coefficients, respectively.

• Intuitively, (6) amounts to a noisy perturbation of the corresponding deterministic CT-RNN

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Noisy	Recurrent Neural	Networks (NRNNs	5)	

Let $x \in C([0, T], \mathbb{R}^{d_x})$ be an input signal.

Continuous-Time NRNNs

$$dh_t = f(h_t, x_t)dt + \sigma(h_t, x_t)dB_t, \qquad y_t = Vh_t,$$
(6)

where $\sigma : \mathbb{R}^{d_h} \times \mathbb{R}^{d_k} \to \mathbb{R}^{d_h \times r}$ and $(B_t)_{t \ge 0}$ is an *r*-dimensional Brownian motion.

The functions f and σ are referred to as the *drift* and *diffusion* coefficients, respectively.

- Intuitively, (6) amounts to a noisy perturbation of the corresponding deterministic CT-RNN
- To guarantee the existence of a unique solution to (6), in the sequel, we assume that $\{f(\cdot, x_t)\}_{t\in[0,T]}$ and $\{\sigma(\cdot, x_t)\}_{t\in[0,T]}$ are uniformly Lipschitz continuous, and $t \mapsto f(h, x_t)$, $t \mapsto \sigma(h, x_t)$ are bounded in $t \in [0, T]$ for each fixed $h \in \mathbb{R}^{d_h}$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Benefit	s of Continuous-T	Fime Formulation		

• (Design) Sampling from these RNNs gives us discrete-time RNNs \implies guided principle and flexibility in designing RNN architectures

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Benefit	ts of Continuous-T	Time Formulation		

- (Design) Sampling from these RNNs gives us discrete-time RNNs \implies guided principle and flexibility in designing RNN architectures
- (Modeling) In situations where the input data are generated by continuous-time dynamical systems, it is desirable to consider learning models which are also continuous in time

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Benefit	s of Continuous-T			

- (Design) Sampling from these RNNs gives us discrete-time RNNs \implies guided principle and flexibility in designing RNN architectures
- (Modeling) In situations where the input data are generated by continuous-time dynamical systems, it is desirable to consider learning models which are also continuous in time
- (Analysis) A rich set of tools and techniques from the continuous-time theory can be borrowed to simplify analysis and to gain useful insights

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Choice	of Drift and Diff	usion Coefficient		

۲

$$f(h, x) = Ah + a(Wh + Ux + b),$$
(7)

22 / 38

where $a : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous scalar activation function extended to act on vectors pointwise, $A, W \in \mathbb{R}^{d_h \times d_h}$, $U \in \mathbb{R}^{d_h \times d_x}$ and $b \in \mathbb{R}^{d_h}$

 $Drift = a \ linear \ component + a \ Lipschitz \ nonlinearity$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Choice	of Drift and Diffus	ion Coefficient		

۲

$$f(h, x) = Ah + a(Wh + Ux + b),$$
(7)

where $a : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous scalar activation function extended to act on vectors pointwise, $A, W \in \mathbb{R}^{d_h \times d_h}$, $U \in \mathbb{R}^{d_h \times d_x}$ and $b \in \mathbb{R}^{d_h}$

 $\mathsf{Drift} = \mathsf{a} \ \mathsf{linear} \ \mathsf{component} + \mathsf{a} \ \mathsf{Lipschitz} \ \mathsf{nonlinearity}$

$$\sigma(h, x) = \epsilon(\sigma_1 I + \sigma_2 \operatorname{diag}(f(h, x))), \qquad (8)$$

where $\epsilon > 0$ is small, and $\sigma_1 \ge 0$ and $\sigma_2 \ge 0$ are tunable parameters

 $\mathsf{Diffusion} = \mathsf{additive} + \mathsf{a} \ \mathsf{multiplicative} \ \mathsf{noise}$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Choice	of Drift and Diffus	ion Coefficient		

۲

$$f(h,x) = Ah + a(Wh + Ux + b),$$
(7)

where $a : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous scalar activation function extended to act on vectors pointwise, $A, W \in \mathbb{R}^{d_h \times d_h}$, $U \in \mathbb{R}^{d_h \times d_x}$ and $b \in \mathbb{R}^{d_h}$

 $Drift = a \ linear \ component + a \ Lipschitz \ nonlinearity$

•

$$\sigma(h, x) = \epsilon(\sigma_1 I + \sigma_2 \operatorname{diag}(f(h, x))), \qquad (8)$$

24 / 38

where $\epsilon > 0$ is small, and $\sigma_1 \ge 0$ and $\sigma_2 \ge 0$ are tunable parameters

Diffusion = additive + a multiplicative noise

One can set $\epsilon = 0$ at inference time

⇒ noise injections in NRNNs can be viewed as a *stochastic learning strategy*

000	0000	0	0	0
Erom C	ontinuous Timo	to Discrete Time	NDNNc	

From Continuous-Time to Discrete-Time INRIVINS

We consider explicit Euler-Maruyama (E-M) integrators, which are the stochastic analogues of Euler-type integration schemes for ODEs.

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	0
Europe C		to Discusto Time		

From Continuous-Time to Discrete-Time NRNNs

We consider explicit Euler-Maruyama (E-M) integrators, which are the stochastic analogues of Euler-type integration schemes for ODEs.

- Let $0 = t_0 < t_1 < \cdots < t_M = T$ be a partition of the interval [0, T]. Denote $\delta_m := t_{m+1} t_m$ for each $m = 0, 1, \dots, M 1$, and $\delta := (\delta_m)$
- The E-M scheme provides a family (parametrized by δ) of approximations to the solution of the SDE in (6):

Discrete-Time NRNNs

$$h_{m+1}^{\delta} = h_m^{\delta} + f(h_m^{\delta}, \hat{x}_m)\delta_m + \sigma(h_m^{\delta}, \hat{x}_m)\sqrt{\delta_m}\xi_m,$$
(9)

for m = 0, 1, ..., M - 1, where $(\hat{x}_m)_{m=0,...,M-1}$ is a given sequential data, the $\xi_m \sim \mathcal{N}(0, I)$ are independent *r*-dimensional standard normal random vectors, and $h_0^{\delta} = h_0$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	•	0	0
Main Re	esults (Theory)			

• We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer induced by the noise injection through a perturbation analysis in the small noise regime

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	•	0	0
Main Res	ults (Theory)			

- We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer induced by the noise injection through a perturbation analysis in the small noise regime
- It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss function according to the noise level, thereby promoting flatter minima and biasing towards models with more stable dynamics

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	•	0	0
Main Res	ults (Theory)			

- We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer induced by the noise injection through a perturbation analysis in the small noise regime
- It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss function according to the noise level, thereby promoting flatter minima and biasing towards models with more stable dynamics

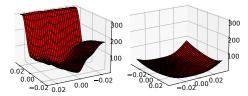


Figure: Hessian loss landscapes for deterministic (left) and noisy (right) model

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	•	0	0
Main Res	ults (Theory)			

- We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer induced by the noise injection through a perturbation analysis in the small noise regime
- It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss function according to the noise level, thereby promoting flatter minima and biasing towards models with more stable dynamics

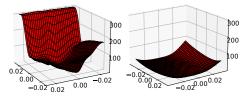


Figure: Hessian loss landscapes for deterministic (left) and noisy (right) model

• We show that, in this small noise regime, NRNNs promote classifiers with large classification margin, an attribute linked to improved model robustness

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	•	0	0
Main Res	ults (Theory)			

- We study Noisy RNNs via the lens of implicit regularization and derive an explicit regularizer induced by the noise injection through a perturbation analysis in the small noise regime
- It turns out that this regularizer reduces the state-to-state Jacobians and Hessian of the loss function according to the noise level, thereby promoting flatter minima and biasing towards models with more stable dynamics

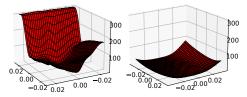


Figure: Hessian loss landscapes for deterministic (left) and noisy (right) model

- We show that, in this small noise regime, NRNNs promote classifiers with large classification margin, an attribute linked to improved model robustness
- We also provide sufficient conditions for stability of the SDE, showing that noise injection can improve stability during training

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	•	0
Main D	Poculto (Exportino)	atc)		

Main Results (Experiments)

We demonstrate on benchmark data sets that NRNN classifiers are more robust to data perturbations when compared to other recurrent models, while retaining SOTA performance for clean data

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	•	0
	<i>i</i>			

Main Results (Experiments)

We demonstrate on benchmark data sets that NRNN classifiers are more robust to data perturbations when compared to other recurrent models, while retaining SOTA performance for clean data

Table: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the ordered MNIST task.

Name	clean	$\sigma = 0.1$	$\sigma = 0.2$	$\sigma = 0.3$	α = 0.03	lpha= 0.05	$\alpha = 0.1$
Antisymmetric RNN (Chang et. al., 2019)	97.5%	45.7%	22.3%	17.0%	77.1%	63.9%	42.6%
CoRNN (Rusch et. al., 2021)	99.1%	96.6%	61.9%	32.1%	95.6%	88.1%	58.9%
Exponential RNN (Lezcano et. al., 2019)	96.7%	86.7%	58.1%	33.3%	83.6%	70.7%	43.4%
Lipschitz RNN (Erichson et. al., 2020)	99.2%	98.4%	78.9%	47.1%	97.6%	93.4%	73.5%
NRNN (mult. noise: 0.02 / add. noise: 0.02)	99.1%	98.9%	88.4%	62.9%	98.3%	95.6%	78.7%
NRNN (mult. noise: 0.02 / add. noise: 0.05)	99.1%	98.9%	92.2%	73.5%	98.5%	97.1%	85.5%

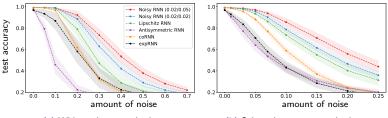
Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	•	0
	· · -			

Main Results (Experiments)

We demonstrate on benchmark data sets that NRNN classifiers are more robust to data perturbations when compared to other recurrent models, while retaining SOTA performance for clean data

Table: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the ordered MNIST task.

Name	clean	$\sigma = 0.1$	$\sigma = 0.2$	$\sigma = 0.3$	α = 0.03	lpha= 0.05	$\alpha = 0.1$
Antisymmetric RNN (Chang et. al., 2019)	97.5%	45.7%	22.3%	17.0%	77.1%	63.9%	42.6%
CoRNN (Rusch et. al., 2021)	99.1%	96.6%	61.9%	32.1%	95.6%	88.1%	58.9%
Exponential RNN (Lezcano et. al., 2019)	96.7%	86.7%	58.1%	33.3%	83.6%	70.7%	43.4%
Lipschitz RNN (Erichson et. al., 2020)	99.2%	98.4%	78.9%	47.1%	97.6%	93.4%	73.5%
NRNN (mult. noise: 0.02 / add. noise: 0.02)	99.1%	98.9%	88.4%	62.9%	98.3%	95.6%	78.7%
NRNN (mult. noise: 0.02 / add. noise: 0.05)	99.1%	98.9%	92.2%	73.5%	98.5%	97.1%	85.5%



(a) White noise perturbations.

(b) Salt and pepper perturbations.

Figure: Test accuracy for the ordered MNIST task as a function of the strength of input perturbations. $\langle \Box \rangle \langle \Box$

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	•
Conclusion				

• Noise injection can be viewed as a stochastic learning strategy used to improve robustness of learning models against data perturbations

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	•
Conclusion				

- Noise injection can be viewed as a stochastic learning strategy used to improve robustness of learning models against data perturbations
- Within the framework of SDEs, we study RNNs trained by injecting noise into the hidden states and the implicit regularization effects of general noise injection schemes, showing that noise injection promotes classifiers with large classification margin

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	•
Conclusion				

- Noise injection can be viewed as a stochastic learning strategy used to improve robustness of learning models against data perturbations
- Within the framework of SDEs, we study RNNs trained by injecting noise into the hidden states and the implicit regularization effects of general noise injection schemes, showing that noise injection promotes classifiers with large classification margin
- Our empirical results are in agreement with our theory and its implications, finding that NRNN classifiers achieve superior robustness to input perturbations

Intro	Noisy RNNs	Main Results	Main Results (Experiments)	Conclusion
000	0000	0	0	•
Conclusion				

- Noise injection can be viewed as a stochastic learning strategy used to improve robustness of learning models against data perturbations
- Within the framework of SDEs, we study RNNs trained by injecting noise into the hidden states and the implicit regularization effects of general noise injection schemes, showing that noise injection promotes classifiers with large classification margin

イロト イヨト イヨト イヨト

38 / 38

• Our empirical results are in agreement with our theory and its implications, finding that NRNN classifiers achieve superior robustness to input perturbations

References

Paper: arXiv:2102.04877 Code: https://github.com/erichson/NoisyRNN