#### Graph Neural Networks with Local Graph Parameters

Pablo Barcelo\*, Floris Geerts\*\*, Juan L. Reutter\*, Maksimilian Ryschkov\*\*

\*Pontificia Universidad Católica de Chile, Santiago, Chile; \*\*University of Antwerp, Belgium

Deep learning on graph data: Graph Neural Networks

GNNs generate vertex embeddings  $\mathbf{h}_u$  for every  $u \in V$  which fit the graph learning task. graph embeddings for every graph



We focus on MPNNs (=Message Passing Neural Networks)

# MPNNs: Idea

Given a labeled graph  $G = (V, E, \chi)$ 

- 1. Start with an initial vertex embedding for all  $u \in V$
- 2. Iteratively update the embeddings using the neighborhood information.

Two types of information get passed:

- Structural information
- Feature information

$$h_{u}^{0} = \text{ initial label } \chi_{u}$$

$$h_{u}^{(l+1)} = \text{Update}^{(l)} \left( h_{u}^{(l)}, \text{Aggregate} \left( \{ h_{v}^{(l)}, \forall v \in \mathcal{N}(u) \} \right) \right)$$

$$\xrightarrow{\text{Target Node}}_{\text{Input Graph}} \circ - AGGREGATE$$

# MPNNs: Strengths and limitations

#### Strengths

- Efficient
- Number of model parameters independent of graph size: generalizes to graphs of any size
- Perform well on variety of graph tasks

**Limitations**: MPNNs cannot learn functions that depend on:

- The number of connected components in a graph
- Presence of cliques, cycles and other not-tree like structures





# A need for more powerful MPNNs

#### Graph patterns are important indicators in graph data.

In social networks, cliques indicate communities.



In molecules, cycles can indicate chemical properties.



Possible approaches:

- 1. Higher-order GNNs
- 2. GNNs with extended features  $\leftarrow$  our contribution

# 1. Higher-order GNNs

Instead of updating vertex embeddings, embeddings of *k*-tuples of vertices are iteratively computed.

- ▶ Isomorphism types of subgraphs induced by *k*-tuples are included in the initial labels
- Patterns up to treewidth k can be detected
- Inefficient: require at least quadratic number of features



## 2. GNNs with extended features

Idea: Adding features containing information that MPNNs cannot learn.

We propose:  $\mathcal{F}$ -MPNNs = a type of Graph Neural Networks infused with local higher-order graph structure information

- Efficiency on par with MPNNs.
- Stronger in expressive power than MPNNs.

#### $\mathcal{F}-\mathsf{MPNNs}$

- 2. Count the local occurrences of these patterns v:  $hom(P^r, G^v)$



Example:  $\mathcal{F} = \{\mathcal{F}_0\}$ 

#### Why homomorphisms?

- Easier to compute than subgraph isomorphisms
- Homomorphisms counts underly the expressive power of MPNNs.
- Theoretically interchangeable with isomorphism counts

3. Extend the inital vertex labels with these additional features.

 $h_u^0 = ($  initial label  $\chi_u$ , hom $(P_1^r, G^v), \dots$ , hom $(P_l^r, G^v))$ 4. Apply a MPNN model on these new, extended, vertex labels.

$$h_u^{(l+1)} = \text{Update}^{(l)} \left( h_u^{(l)}, \text{Aggregate} \left( \{ h_v^{(l)}, \forall v \in \mathcal{N}(u) \} \right) \right)$$

## Expressive Power of $\mathcal{F}$ -MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way) if:

# MPNNs Homomorphism counts are equal for every rooted tree (Dell et al, 2018). with: Rooted trees S<sup>r</sup>: a graph without cycles and a designated root Image: Comparison of the system of th

## Expressive Power of $\mathcal{F}$ -MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way) if:

| MPNNs                                                                           | $\mathcal{F}	ext{-MPNNs}$                                                                                                               |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Homomorphism counts are equal for every <b>rooted tree</b> (Dell et al., 2018). | Homomorphism counts are equal for every $\mathcal{F}$ - <b>pattern tree</b> (our contribution).                                         |
| with:                                                                           |                                                                                                                                         |
| Rooted trees $S^r$ : a graph without cycles and a designated root               | $\mathcal{F}$ -pattern tree $T^r$ : backbone tree $S^r$<br>with vertices $s \in V_S$ joined with copies<br>of patterns in $\mathcal{F}$ |
|                                                                                 |                                                                                                                                         |

# Comparison with higher-order GNNs

#### 1. Highest treewidth of patterns in $\mathcal{F} \leq k$ :

 $\mathcal{F}$ -MPNNs cannot distinguish any pair of graphs indistinguishable by *k*th-order GNNs Example: { $K_3, K_4$ }-MPNNs cannot distinguish any pair of graphs indistinguishable by 3th-order GNNs

#### 2. Highest treewidth of patterns in $\mathcal{F} > k$ :

There exists a pair of graphs indistinguishable by kth-order GNNs that some  $\mathcal{F}$ -MPNNs can distinguish

Example: There exists a pair of graphs indistinguishable by 3th-order GNNs that some  $\{K_3, K_4, K_5\}$ -MPNN can distinguish

## Pattern choice

- The choice of patterns in  $\mathcal{F}$ : important & application-dependent.
- ▶ We prove several results offering possible choices for patterns.

#### Examples:

- ► {K<sub>3</sub>,...,K<sub>k</sub>}-MPNN is more expressive than {K<sub>3</sub>,...,K<sub>k-1</sub>}-MPNN for any k > 3
- ▶  $\{C_3, \ldots, C_{2k-1}, C_{2k+1}\}$ -MPNN is more expressive than  $\{C_3, \ldots, C_{2k-1}\}$ -MPNN for any k > 3

# Experiments: Methodology

We use the benchmark study for GNNs by Dwivedi et al. (2020).

| Datasets       | ZINC                          | PATTERN                      | COLLAB                       |
|----------------|-------------------------------|------------------------------|------------------------------|
| Learning Tasks | Graph Regression              | Node Classification          | Link Prediction              |
| Pattern sets   | $\{C_I \mid 3 \le k \le 10\}$ | $\{K_I \mid 3 \le k \le 5\}$ | $\{K_l \mid 3 \le k \le 5\}$ |

Comparison to:

- Baseline models with same parameters
- ▶ For ZINC: the similar GSN (Bouritsas et al, 2020) approach, where isomorphisms instead of homomorphisms are computed:



## Experiments: Some Results

GAT on ZINC with varying  ${\cal F}$ 

Results on the ZINC dataset with  $\mathcal{F} = \{C_l \mid 3 \le k \le 10\}$ 

| ${\cal F}$             | MAE               |
|------------------------|-------------------|
| None                   | 0.47±0.02         |
| $\{C_3\}$              | $0.45 {\pm} 0.01$ |
| $\{C_4\}$              | $0.34{\pm}0.02$   |
| $\{C_{6}\}$            | $0.31 {\pm} 0.01$ |
| $\{C_5, C_6\}$         | $0.28 \pm 0.01$   |
| $\{C_3 \ldots C_6\}$   | $0.23 \pm 0.01$   |
| $\{C_3 \dots C_{10}\}$ | $0.22{\pm}0.01$   |

| Dataset   | ZINC            |                               |                 |  |
|-----------|-----------------|-------------------------------|-----------------|--|
| Model     | MAE MAE         |                               | MAE             |  |
|           | (base)          | (hom)                         | (iso)           |  |
| GAT       | $0.47{\pm}0.02$ | $0.22{\pm}0.01$               | $0.24{\pm}0.01$ |  |
| GCN       | $0.35{\pm}0.01$ | $0.20{\pm}0.01$               | $0.22{\pm}0.01$ |  |
| GraphSage | $0.44{\pm}0.01$ | $0.24{\pm}0.01$               | $0.22{\pm}0.01$ |  |
| MoNet     | $0.25{\pm}0.01$ | $0.19{\pm}0.01$               | $0.16{\pm}0.01$ |  |
| GatedGCN  | $0.34{\pm}0.05$ | $0.14{\scriptstyle \pm 0.01}$ | $0.14{\pm}0.01$ |  |

## Experiments: More Results

#### Results on the COLLAB and PATTERN datasets

| Dataset   | COLLAB             |                    | PATTERN          |                                  |
|-----------|--------------------|--------------------|------------------|----------------------------------|
| Model     | Hits@50            | Hits@50            | Accuracy         | Accuracy                         |
|           | (base)             | (hom)              | (base)           | (hom)                            |
| GAT       | 50.32±0.55         | 52.87±0.87         | 78.83 ± 0.60     | $85.50 \pm 0.23$                 |
| GCN       | $51.35{\pm}1.30$   | $54.60{\pm}1.01$   | $71.42 \pm 1.38$ | $82.49 \pm 0.48$                 |
| GraphSage | $50.33 \pm 0.68$   | $51.39 \pm 1.23$   | $70.78 \pm 0.19$ | $85.85 \ \pm \ 0.15$             |
| MoNet     | $49.81 \pm 1.56$   | $51.76 \pm 1.38$   | $85.90 \pm 0.03$ | $\textbf{86.63}\pm\textbf{0.03}$ |
| GatedGCN  | $51.00\ \pm\ 2.54$ | $51.57\ \pm\ 0.68$ | $86.15 \pm 0.08$ | $85.56{\pm}0.33$                 |

## Conclusions

- *F*-MPNN beat MPNNs in expressive power and are more efficient than higher-order GNNs
- Adding patterns to MPNNs is a low-cost strategy for improving the learning power of MPNNs.
- Pattern choice is important, but simple sets of cliques or cycles are shown to work.
- Experimental study shows that the performance of various MPNN models is enhanced by additional structural vertex features