Risk-Aware Transfer in Reinforcement Learning using Successor Features

Michael Gimelfarb^{1,3} André Barreto² Scott Sanner^{1,3} Chi-Guhn Lee¹

¹University of Toronto ²DeepMind ³Vector Institute (Affiliate Program)

Introduction

Figure 1: Sample Efficiency (Source: original
paper on Rainbow DQN)Figure 2: Risk-Awareness (Source: Wikimedia
Commons)

Figure 1: Sample Efficiency (Source: original
paper on Rainbow DQN)Figure 2: Risk-Awareness (Source: Wikimedia
Commons)

• transfer learning

- replace $\mathbb{E}[\cdot]$ by non-linear utility $\mathcal{U}[\cdot]$

Our goals:

Our goals:

• transfer between tasks with shared dynamics and different goals

Our goals:

- transfer between tasks with shared dynamics and different goals
- borrow GPI/GPE (e.g. successor features) from the risk-neutral setting¹

Our goals:

- transfer between tasks with shared dynamics and different goals
- borrow GPI/GPE (e.g. successor features) from the risk-neutral setting¹
- provide task generalization by exploiting the structure of the task/reward space

Our goals:

- transfer between tasks with shared dynamics and different goals
- borrow GPI/GPE (e.g. successor features) from the risk-neutral setting¹
- provide task generalization by exploiting the structure of the task/reward space
- design a method suitable for offline RL²

¹Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning." NIPS. 2017. ²Levine, Sergey, et al. "Offline reinforcement learning..." arXiv. 2020.

Our goals:

- transfer between tasks with shared dynamics and different goals
- borrow GPI/GPE (e.g. successor features) from the risk-neutral setting¹
- provide task generalization by exploiting the structure of the task/reward space
- design a method suitable for offline RL^2

• incorporate risk explicitly by e.g. penalizing the variance of returns ¹Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning." NIPS. 2017. ²Levine, Sergey, et al. "Offline reinforcement learning..." arXiv. 2020.

Introduce Risk-Aware Successor Features (RaSF)

Introduce Risk-Aware Successor Features (RaSF)

	Transfers Skills	Exploits Task Structure	Risk-Sensitive
Risk-Aware RL	×	×	 ✓
Risk-Aware Transfer	✓	×	 ✓
Successor Features	✓	✓	×
RaSF (Ours)	1	1	 ✓

Preliminaries – Successor Features

Policy Evaluation

Policy Evaluation

Policy Evaluation

- E[R₀ + γR₁ + ...] requires averaging all possible future outcomes of the world curse of dimensionality
 - use cached Q(s', a') in each successor state to **bootstrap** the estimated Q-values in state s

$$Q(s,a) = \mathbb{E}_{S' \sim P(\cdot|s,a)}[R_t + \gamma Q(S', \pi(S'))]$$

Policy Improvement

• compute the value of π , e.g.

$$Q^{\pi}(s,a) = \mathbb{E}_{S' \sim P(\cdot|s,a)}[R^{\pi}_t + \gamma Q(S', \pi(S'))] \quad \triangleleft \text{ policy evaluation}$$

• compute the value of π , e.g.

$$Q^{\pi}(s, a) = \mathbb{E}_{S' \sim P(\cdot|s, a)}[R^{\pi}_t + \gamma Q(S', \pi(S'))] \quad \triangleleft \text{ policy evaluation}$$

• construct a new policy π' according to

• compute the value of π , e.g.

$$Q^{\pi}(s,a) = \mathbb{E}_{S' \sim P(\cdot|s,a)}[R^{\pi}_t + \gamma Q(S',\pi(S'))] \quad \triangleleft \text{ policy evaluation}$$

• construct a new policy π' according to

$$\pi'(s) \in \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} Q^{\pi}(s, a) \quad \triangleleft \text{ policy improvement}$$

Policy Improvement Theorem: π' is "better" than π , e.g. $Q^{\pi'}(s, a) \ge Q^{\pi}(s, a)$

Generalized Policy Iteration

Generalized Policy Iteration

Alternating between evaluation and improvement leads to an optimal policy

Generalized Policy Iteration

Alternating between evaluation and improvement leads to an optimal policy

Key Idea: Replace π with multiple source policies $\pi_1 \dots \pi_n$.

Generalized Policy Improvement 2.0

Suppose π_1, \ldots, π_n are given¹:

Generalized Policy Improvement 2.0

Suppose π_1, \ldots, π_n are given¹:

• compute the values

 $Q^{\pi_1}(s,a),\ldots Q^{\pi_n}(s,a)$

 \triangleleft generalized policy evaluation (GPE)

Generalized Policy Improvement 2.0

Suppose π_1, \ldots, π_n are given¹:

• compute the values

 $Q^{\pi_1}(s, a), \ldots Q^{\pi_n}(s, a) ext{ densative}$ generalized policy evaluation (GPE)

• pick the policy with the best return

 $i^* \in rg\max_i Q^{\pi_i}(s,a)$

Suppose $\pi_1, \ldots \pi_n$ are given¹:

• compute the values

 $Q^{\pi_1}(s,a), \ldots Q^{\pi_n}(s,a)$ \triangleleft generalized policy evaluation (GPE)

• pick the policy with the best return

 $i^* \in rg\max_i Q^{\pi_i}(s, a)$

• construct π' as usual but w.r.t. the "best" policy π_{i^*}

$$\pi'(s) \in \underset{a \in \mathcal{A}}{\arg \max} Q^{\pi_{i^{*}}}(s, a) = \underset{a \in \mathcal{A}}{\arg \max} \max_{\substack{i=1...n \\ q \text{ generalized policy improvement (GPI)}} Q^{\pi_{i}}(s, a)$$

Suppose $\pi_1, \ldots \pi_n$ are given¹:

• compute the values

 $Q^{\pi_1}(s,a), \ldots Q^{\pi_n}(s,a)$ \triangleleft generalized policy evaluation (GPE)

• pick the policy with the best return

 $i^* \in rg\max_i Q^{\pi_i}(s,a)$

• construct π' as usual but w.r.t. the "best" policy π_{i^*}

$$\pi'(s) \in \underset{a \in \mathcal{A}}{\arg \max} Q^{\pi_{i^{*}}}(s, a) = \underset{a \in \mathcal{A}}{\arg \max} \max_{\substack{i=1...n \\ q \text{ generalized policy improvement (GPI)}} Q^{\pi_{i}}(s, a)$$

Key result: π' is better than π_{i^*} . ¹Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning." NeurIPS 2017.

Preliminaries – Risk-Aversion in MDPs using Entropic Utility Functions

Optimizing risk measures in sequential problems is hard²:

²Chow, Yin-Lam, and Marco Pavone. "A framework for time-consistent, risk-averse model predictive control: Theory and algorithms." 2014 American Control Conference. IEEE, 2014.

Optimizing risk measures in sequential problems is hard²:

• considering optimizing a final cost Z:

²Chow, Yin-Lam, and Marco Pavone. "A framework for time-consistent, risk-averse model predictive control: Theory and algorithms." 2014 American Control Conference. IEEE, 2014.

Optimizing risk measures in sequential problems is hard²:

• considering optimizing a final cost Z:

• consider the dynamic risk measure

$$\rho_{k,N}(Z) = \max_{p \in \{0.4,0.6\}} \mathbb{E}_p[Z|\mathcal{F}_k],$$

for k = 0, 1, 2

²Chow, Yin-Lam, and Marco Pavone. "A framework for time-consistent, risk-averse model predictive control: Theory and algorithms." 2014 American Control Conference. IEEE, 2014.
Time-Consistency

Optimizing risk measures in sequential problems is hard²:

• considering optimizing a final cost Z:

 it is easy to check that ρ₁(Z)(ω) = 60 for all ω, so Z is riskier than a deterministic cash flow of W = 50 at time 1

• consider the dynamic risk measure

$$\rho_{k,N}(Z) = \max_{p \in \{0.4,0.6\}} \mathbb{E}_p[Z|\mathcal{F}_k],$$

for k = 0, 1, 2²Chow, Yin-Lam, and Marco Pavone. "A framework for time-consistent, risk-averse model predictive control: Theory and algorithms." 2014 American Control Conference. IEEE, 2014.

Time-Consistency

Optimizing risk measures in sequential problems is hard²:

• considering optimizing a final cost Z:

• consider the dynamic risk measure

$$\rho_{k,N}(Z) = \max_{p \in \{0.4,0.6\}} \mathbb{E}_p[Z|\mathcal{F}_k],$$

- it is easy to check that ρ₁(Z)(ω) = 60 for all ω, so Z is riskier than a deterministic cash flow of W = 50 at time 1
- yet, ρ₀(Z)(ω) = 40 and so Z is less risky than W at time 0!

for k = 0, 1, 2²Chow, Yin-Lam, and Marco Pavone. "A framework for time-consistent, risk-averse model predictive control: Theory and algorithms." 2014 American Control Conference. IEEE, 2014.

Time-Consistency

Optimizing risk measures in sequential problems is hard²:

• considering optimizing a final cost Z:

• consider the dynamic risk measure

$$\rho_{k,N}(Z) = \max_{p \in \{0.4,0.6\}} \mathbb{E}_p[Z|\mathcal{F}_k],$$

- it is easy to check that ρ₁(Z)(ω) = 60 for all ω, so Z is riskier than a deterministic cash flow of W = 50 at time 1
- yet, $\rho_0(Z)(\omega) = 40$ and so Z is less risky than W at time 0!

Key idea: *Z* has become riskier just because time has passed!

for k = 0, 1, 2²Chow, Yin-Lam, and Marco Pavone. "A framework for time-consistent, risk-averse model predictive control: Theory and algorithms." 2014 American Control Conference. IEEE, 2014.

We use the **entropic utility** to measure risk:

We use the **entropic utility** to measure risk:

• defined in terms of the moment-generating function

$$U_eta[{\sf R}] = rac{1}{eta} \log \mathbb{E}\left[e^{eta {\sf R}}
ight]$$

We use the **entropic utility** to measure risk:

• defined in terms of the moment-generating function

$$U_eta[R] = rac{1}{eta} \log \mathbb{E}\left[e^{eta R}
ight]$$

• has the Taylor expansion

$$U_eta[R] = \mathbb{E}[R] + rac{eta}{2} \mathbb{V}[R] + O(eta^2)$$
 $rianglet eta$ is a level of risk-aversion

We use the **entropic utility** to measure risk:

• defined in terms of the moment-generating function

$$U_eta[{\sf R}] = rac{1}{eta} \log \mathbb{E}\left[e^{eta {\sf R}}
ight]$$

• has the Taylor expansion

$$U_{\beta}[R] = \mathbb{E}[R] + \frac{\beta}{2} \mathbb{V}[R] + O(\beta^2)$$
 $\triangleleft \beta$ is a level of risk-aversion

• connected to the mean-variance optimization in MDPs¹

¹Mannor, Shie, and John N. Tsitsiklis. "Mean-variance optimization in Markov decision processes." ICML. 2011.

We incorporate entropic utility into MDPs:

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

$$\boxed{ \mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta} \left[\sum_{t=h}^{T} r(s_t, \pi_t(s_t), s_{t+1}) \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s' \sim \mathcal{P}(\cdot|s,a)} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s' \sim \mathcal{P}(\cdot|s,a)} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1}(s') \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1}(s') \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1}(s') \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1}(s') \right\}} \right] }_{= \frac{1}{\beta} \log \mathbb{E}_{s'} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1}$$

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta} \left[\sum_{t=h}^{T} r(s_{t}, \pi_{t}(s_{t}), s_{t+1}) \right].$$

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta} \left[r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right]$$

$$= \frac{1}{\beta} \log \mathbb{E}_{s' \sim \mathcal{P}(\cdot|s,a)} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right].$$

 recursive property: behaves similar to expectation in total-reward episodic MDPs¹ (and discounted MDPs with simple modifications)

¹Osogami, Takayuki. "Robustness and risk-sensitivity in Markov decision processes." NeurIPS 2012.

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta} \left[\sum_{t=h}^{T} r(s_{t}, \pi_{t}(s_{t}), s_{t+1}) \right].$$

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta} \left[r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right]$$

$$= \frac{1}{\beta} \log \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right].$$

- **recursive property:** behaves similar to expectation in total-reward episodic MDPs¹ (and discounted MDPs with simple modifications)
- convex/concave: satisfies properties that can be seen as rational decision making

¹Osogami, Takayuki. "Robustness and risk-sensitivity in Markov decision processes." NeurIPS 2012.

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta} \left[\sum_{t=h}^{T} r(s_{t}, \pi_{t}(s_{t}), s_{t+1}) \right].$$

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta} \left[r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right]$$

$$= \frac{1}{\beta} \log \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[e^{\beta \left\{ r(s,a,s') + \mathcal{Q}_{h+1,\beta}^{\pi}(s', \pi_{h+1}(s')) \right\}} \right].$$

- **recursive property:** behaves similar to expectation in total-reward episodic MDPs¹ (and discounted MDPs with simple modifications)
- convex/concave: satisfies properties that can be seen as rational decision making
- time consistency: can focus on Markov policies

¹Osogami, Takayuki. "Robustness and risk-sensitivity in Markov decision processes." NeurIPS 2012.

Theory

Why is the problem non-trival?

Why is the problem non-trival?

- 1. Define a family of tasks:
 - two source tasks:

low failure cost + high failure cost

• one target task:

only X has high failure cost

- 1. Define a family of tasks:
 - two source tasks:

low failure cost + high failure cost

one target task:

only X has high failure cost

2. Solve them with VI for **fixed** β

- 1. Define a family of tasks:
 - two source tasks:

```
low failure cost + high failure cost
```

• one target task:

only X has high failure cost

3. Apply risk-aware and risk-neutral GPI:

2. Solve them with VI for **fixed** β

- 1. Define a family of tasks:
 - two source tasks:

```
low failure cost + high failure cost
```

• one target task:

only X has high failure cost

3. Apply risk-aware and risk-neutral GPI:

2. Solve them with VI for **fixed** β

Conclusion: only risk-aware GPI results in the correct target policy

Armed with this knowledge, we prove that risk-aware GPI:

Armed with this knowledge, we prove that risk-aware GPI:

• is a strict policy improvement operator

Theorem 1 (GPI for Entropic Utility). Let π_1, \ldots, π_n be arbitrary deterministic Markov policies with utilities $\tilde{\mathcal{Q}}_{h,\beta}^{\pi_1}, \ldots, \tilde{\mathcal{Q}}_{h,\beta}^{\pi_n}$ evaluated in an arbitrary task M, such that $|\tilde{\mathcal{Q}}_{h,\beta}^{\pi_i}(s, a) - \mathcal{Q}_{h,\beta}^{\pi_i}(s, a)| \leq \varepsilon$ for all $s \in S$, $a \in \mathcal{A}$, $i = 1 \ldots n$ and $h \in \mathcal{T}$. Define

$$\pi_h(s) \in \underset{a \in \mathcal{A}}{\arg \max} \max_{i=1...n} \tilde{\mathcal{Q}}_{h,\beta}^{\pi_i}(s,a), \quad \forall s \in \mathcal{S}.$$
(4)

Then,

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) \ge \max_{i} \mathcal{Q}_{h,\beta}^{\pi_{i}}(s,a) - 2(T-h+1)\varepsilon, \quad h \le T.$$

Armed with this knowledge, we prove that risk-aware GPI:

• is a strict policy improvement operator

Theorem 1 (GPI for Entropic Utility). Let π_1, \ldots, π_n be arbitrary deterministic Markov policies with utilities $\tilde{\mathcal{Q}}_{h,\beta}^{\pi_1}, \ldots, \tilde{\mathcal{Q}}_{h,\beta}^{\pi_n}$ evaluated in an arbitrary task M, such that $|\tilde{\mathcal{Q}}_{h,\beta}^{\pi_i}(s, a) - \mathcal{Q}_{h,\beta}^{\pi_i}(s, a)| \leq \varepsilon$ for all $s \in S$, $a \in \mathcal{A}$, $i = 1 \ldots n$ and $h \in \mathcal{T}$. Define

$$\pi_h(s) \in \underset{a \in \mathcal{A}}{\arg \max} \max_{i=1...n} \tilde{\mathcal{Q}}_{h,\beta}^{\pi_i}(s,a), \quad \forall s \in \mathcal{S}.$$
(4)

Then,

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) \ge \max_{i} \mathcal{Q}_{h,\beta}^{\pi_{i}}(s,a) - 2(T-h+1)\varepsilon, \quad h \le T.$$

• is optimal up to an irreducible task discrepancy gap

Theorem 2. Let $\mathcal{Q}_{h,\beta}^{\pi_i^*}$ be the utilities of optimal Markov policies π_i^* from task M_i but evaluated in task M with reward function r(s, a, s'). Furthermore, let $\tilde{\mathcal{Q}}_{h,\beta}^{\pi_i^*}$ be such that $|\tilde{\mathcal{Q}}_{h,\beta}^{\pi_i^*}(s, a) - \mathcal{Q}_{h,\beta}^{\pi_i^*}(s, a)| < \varepsilon$ for all $s \in S$, $a \in \mathcal{A}$, $h \in \mathcal{T}$ and $i = 1 \dots n$, and let π be the corresponding policy in (4). Finally, let $\delta_r = \min_{i=1\dots n} \sup_{s,a,s'} |r(s, a, s') - r_i(s, a, s')|$. Then,

$$\left|\mathcal{Q}_{h,\beta}^{\pi}(s,a) - \mathcal{Q}_{h,\beta}^{*}(s,a)\right| \le 2(T-h+1)(\delta_r + \varepsilon), \quad h \le T.$$
¹⁸

Generalized Policy Evaluation

Assume linear reward:

$$r(s, a, s') = \phi(s, a, s')^{\mathsf{T}}\mathsf{w}$$

Assume linear reward:

$$r(s,a,s') = oldsymbol{\phi}(s,a,s')^{\mathsf{T}}\mathsf{w}^{\mathsf{T}}$$

Now:

$$Q_{\mathsf{w}}^{\pi}(s, a) = \mathbb{E}\left[\sum_{t} \gamma^{t} \mathcal{R}_{t} \middle| S_{0} = s, A_{0} = a, A_{t} \sim \pi(S_{t})\right]$$
$$= \mathbb{E}\left[\sum_{t} \gamma^{t} \phi_{t}^{\mathsf{T}} \mathsf{w} \middle| S_{0} = s, A_{0} = a, A_{t} \sim \pi(S_{t})\right]$$
$$= \mathbb{E}\left[\sum_{t} \gamma^{t} \phi_{t} \middle| S_{0} = s, A_{0} = a, A_{t} \sim \pi(S_{t})\right]^{\mathsf{T}} \mathsf{w}$$
$$\underbrace{\Psi^{\pi}(s, a)}$$

Can generalize GPE to distributions of return:

$$\mathcal{Q}_{h,eta}^{\pi}(s,a) = U_eta \left[\sum_{t=h}^T r(s_t,\pi_t(s_t),s_{t+1})
ight] = U_eta \left[\Psi_h^{\pi}(s,a)^{\mathsf{T}} \mathsf{w}
ight]$$

Can generalize GPE to distributions of return:

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta}\left[\sum_{t=h}^{T} r(s_t, \pi_t(s_t), s_{t+1})\right] = U_{\beta}\left[\Psi_h^{\pi}(s,a)^{\mathsf{T}}\mathsf{w}\right]$$

One simple trick is to Taylor expand to the second moment:

$$egin{aligned} &\mathcal{U}_eta\left[\Psi^\pi_h(s,a)^\mathsf{T}\mathsf{w}
ight] = \mathbb{E}_P[\Psi^\pi_h(s,a)^\mathsf{T}\mathsf{w}] + rac{eta}{2}\mathrm{Var}_P[\Psi^\pi_h(s,a)^\mathsf{T}\mathsf{w}] + O(eta^2) \ &pprox oldsymbol{\psi}_h^\pi(s,a)^\mathsf{T}\mathsf{w} + rac{eta}{2}\mathsf{w}^\mathsf{T}\mathrm{Var}_P[\Psi^\pi_h(s,a)]\mathsf{w} = ilde{\mathcal{Q}}^\pi_{h,eta}(s,a). \end{aligned}$$

Can generalize GPE to distributions of return:

$$\mathcal{Q}_{h,\beta}^{\pi}(s,a) = U_{\beta}\left[\sum_{t=h}^{T} r(s_t, \pi_t(s_t), s_{t+1})\right] = U_{\beta}\left[\Psi_h^{\pi}(s,a)^{\mathsf{T}}\mathsf{w}\right]$$

One simple trick is to Taylor expand to the second moment:

$$U_{\beta} \left[\Psi_{h}^{\pi}(s,a)^{\mathsf{T}} \mathsf{w} \right] = \mathbb{E}_{P} \left[\Psi_{h}^{\pi}(s,a)^{\mathsf{T}} \mathsf{w} \right] + \frac{\beta}{2} \operatorname{Var}_{P} \left[\Psi_{h}^{\pi}(s,a)^{\mathsf{T}} \mathsf{w} \right] + O(\beta^{2})$$
$$\approx \psi_{h}^{\pi}(s,a)^{\mathsf{T}} \mathsf{w} + \frac{\beta}{2} \mathsf{w}^{\mathsf{T}} \operatorname{Var}_{P} \left[\Psi_{h}^{\pi}(s,a) \right] \mathsf{w} = \tilde{\mathcal{Q}}_{h,\beta}^{\pi}(s,a)$$

Reduces to a (simpler) problem of estimating **sufficient statistics** of the feature occupancy

Experiments

Domains
Domains

Two domains from Barreto et al., 2017:

Domains

Two domains from Barreto et al., 2017:

Introduce reward volatility:

- traps X for four-room
- action noise + danger zones for reacher

Train on a sequence of 128 random task instances, for 20,000 steps each

Four-Room

Train on a sequence of 128 random task instances, for 20,000 steps each

Sensitivity to β parameter:

Four-Room

Sensitivity to β parameter:

Train on four source tasks, test periodically on 8 unseen test tasks:

Train on four source tasks, test periodically on 8 unseen test tasks:

Does the agent learn risk-sensitive behavior?

Does the agent learn risk-sensitive behavior?

How sensitive is the agent to β ? Does the C51 method help in learning SFs?

How sensitive is the agent to β ? Does the C51 method help in learning SFs?

Conclusion

• we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer in domains where tasks have different goals

- we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer in domains where tasks have different goals
- we extended generalized policy improvement to the risk-aware setting with entropic utilities

- we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer in domains where tasks have different goals
- we extended generalized policy improvement to the risk-aware setting with entropic utilities
- we then extended the notion of generalized policy evaluation via the Taylor expansion of the entropic utility

- we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer in domains where tasks have different goals
- we extended generalized policy improvement to the risk-aware setting with entropic utilities
- we then extended the notion of generalized policy evaluation via the Taylor expansion of the entropic utility
- together, risk-aware GPI and GPE are shown to inherit the superior task generalization abilities of successor features, while also learning to avoid risky situations

Thank you.