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1Contextual Multi-Armed Bandits

1

Context xt

Action at

Reward rt

Environment samples a context

xt „ ρ

Agent plays an action

at „ πp¨|xtq

Environment generates a reward

rt “ rpxt, atq

Goal: find a policy π˚ maximizing the expected reward (Langford and Zhang, 2007)

π˚ P arg max
π

vpπq “ E
x„ρ

a„πp¨|xq

rrpx, aqs
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2Off-Policy Evaluation and Learning

2

Input: D “ tpxt, at, rtqutPrns samples collected with a behavioral policy πb

Off-Policy Evaluation (Off-PE)
evaluate a given target policy πe

Off-Policy Learning (Off-PL)
learn an optimal policy πe

How to estimate the expected reward under πe having samples collected with πb?
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3Vanilla Importance Sampling (IS)

3

Goal: estimate the expectation µ of a function f under a target distribution P
having samples collected with a behavioral distribution Q (Owen, 2013)

pµn “
1

n

ÿ

iPrns

P pyiq

Qpyiq

ωpyiq
importance weight

fpyiq yi
iid
„ Q, P ! Q

, Unbiased: E
yi

iid
„Q
rpµns “ Ey„P rfpyqs “ µ

/ Variance: can be very large! (Metelli et al., 2018)

Var
yi

iid
„Q

rpµns ď
}f}8
n

I2pP }Qq

»exp Rényi divergence

IαpP }Qq “

ż

Y
P pyqαQpyq1´αdy
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4Anticoncentration of Vanilla Importance Sampling

4

Polynomial (dependence on δ) concentration (Metelli et al., 2018)

|pµn ´ µ| ď O

˜

}f}8

ˆ

IαpP }Qq

δnα´1

˙
1
α

¸

w.p. 1´ δ

/ Anti-concentration (ours): Polynomial concentration is tight!

|pµn ´ µ| ě Ω

˜

}f}8

ˆ

IαpP }Qq ´ 1

δnα´1

˙
1
α

¸

w.p. δ

How to cope with this behavior?
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5Importance Sampling Corrections

5

Self-Normalized Importance Sampling (SN-IS, Kuzborskij et al., 2021)

ωSNpyiq “
nωpyiq

ř

jPrns ωpyjq

Importance Sampling with TRuncation (IS-TR, Ionides, 2008; Papini et al.,
2019)

ωTRpyiq “mintωpyiq,Mu

Importance Sampling with Optimistic Shrinkage (IS-OS, Su et al., 2020)

ωOSpyiq “
τωpyiq

ωpyiq
2 ` τ
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6Importance Sampling Corrections Comparison

6

Estimator
Concentration

(order O)
Is

subgaussian?
Is unbiased

when P “ Q?
Is

differentiable?

IS
b

I2pP }Qq
δn

/ (poly) , ,
SN-IS BSN

`

b

V ES log 1
δ

/ (exp) , ,
IS-TR

b

I2pP }Qq log
1
δ

n
, / /

IS-OS max
βPt2,3u

β

c

IβpP }Qqplog
1
δ q

β´1

nβ´1 / (exp) / ,

Goal: design an estimator that fulfills all the three properties!
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7Power-Mean Correction of Importance Sampling

7

Idea: interpolate between vanilla weight and 1 in a smooth way

ps,λq-corrected weight

ωλ,spyq “
´

ppp1 ´́́ λqqq ωpyq
vanilla weight

s
` λ

¯
1
s

, Unbiased when P “ Q a.s.

, If s ă 0, the weight is bounded: ωλ,spyq ď λ
1
s

We focus on s “ ´1
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8Concentration Inequalities

8

Select λ as a function of IαpP }Qq and δ

Exponential (dependence on δ) concentration

pµn,λ˚α ´ µ ď }f}8p2`
?

3q

˜

2IαpP }Qq
1

α´1 log 1
δ

3pα´ 1q2n

¸1´ 1
α

w.p. 1´ δ

, With α “ 2, we have Subgaussian concentration inequality

pµn,λ˚2 ´ µ ď }f}8p2`
?

3q

d

2IαpP }Qqlog
1
δ

3n
w.p. 1´ δ

Method to compute λ˚2 without knowledge of IαpP }Qq in the paper
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9Differentiability

9

When the target distribution is parametric and differentiable Pθ

∇θωλpyq “
p1´ λqωpyq

p1´ λ` λωpyqq2
∇θ logPθpyq

Bounded gradient when λ ą 0

}∇θωλpyq}8 ď
1

4λ
}∇θ logPθpyq}8
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10Importance Sampling Corrections Comparison

10

Estimator
Concentration

(order O)
Is

subgaussian?
Is unbiased

when P “ Q?
Is

differentiable?

IS
b

I2pP }Qq
δn

/ (poly) , ,
SN-IS BSN

`

b

V ES log 1
δ

/ (exp) , ,
IS-TR

b

I2pP }Qq log
1
δ

n
, / /

IS-OS max
βPt2,3u

β

c

IβpP }Qqplog
1
δ q

β´1

nβ´1 / (exp) / ,

IS-λ

b

I2pP }Qq log
1
δ

n
, , ,
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11Off-Policy Evaluation Experiments

11

Synthetic experiment with Gaussian distributions

I2pP }Qq » 27.9 and fpyq “ 100 cosp2πyq

(best in bold and second best underlined)

Estimator / n 10 20 50 100 200 500 1000

IS 27.43˘ 13.33 15.70˘ 4.83 10.89˘ 1.81 9.26˘ 0.92 12.41˘ 1.88 9.42˘ 0.68 5.84˘ 0.27

SN-IS 23.89˘ 5.77 15.62˘ 2.62 10.96˘ 1.18 9.53˘ 0.74 8.82˘ 0.62 7.48˘ 0.37 5.14˘ 0.20

IS-TR 23.47˘ 7.52 14.03˘ 2.75 10.32˘ 1.47 8.89˘ 0.79 7.68˘ 0.46 6.21˘ 0.28 4.22˘ 0.15

IS-OS 19.25˘ 8.68 10.93˘ 3.29 8.37˘ 1.35 7.06˘ 0.61 8.69˘ 1.44 6.65˘ 0.47 3.97˘ 0.16

IS-λ˚ 21.75˘ 6.36 13.17˘ 2.45 9.26˘ 1.19 7.76˘ 0.62 6.53˘ 0.38 5.29˘ 0.23 3.52˘ 0.12

Other experiments in contextual MABs in the paper
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12Off-Policy Learning Experiments

12

Contextual MAB built starting from classification dataset (Dud́ık et al., 2011)

Gradient-ascent learning regularized with I2pP }Qq

glass kropt letter ecoli
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13Discussion and Conclusions

13

Contributions

Anti-concentration bound proving that vanilla IS has polynomial concentration

First importance sampling correction that ensures:
‚ Subgaussian concentration
‚ Differentiability in the target distribution

Experimental evaluation showing promising results

Future Works

Study different values of s

Extend to reinforcement learning
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Thank You for Your Attention!

Code: github.com/albertometelli/subgaussian-is

Contact: albertomaria.metelli@polimi.it

https://github.com/albertometelli/subgaussian-is
mailto:albertomaria.metelli@polimi.it
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