A Central Limit Theorem for Differentially Private Query Answering

Jinshuo Dong

Northwestern University / IDEAL

Joint work with Weijie Su[†] and Linjun Zhang[§] [†]University of Pennsylvania [§]Rutgers University

Our goal

Differential Privacy: ٩

> Hide individual details in the noise. Keep population information clean.

• Great success in recent years:

• Core question:

Privacy-accuracy trade-off

- Many statistics/ML tasks:
 - Exists (ε, δ)-DP algorithm with error ≤ C · √log δ⁻¹/ε · d/n
 Any (ε, δ)-DP algorithm has error ≥ c · √log δ⁻¹/ε · d/n
- Our goal: understand the constant, for the simplest problem

Privacy-accuracy trade-off

- Query $f: D \mapsto \mathbb{R}$ or \mathbb{R}^d where D is a dataset.
- Query answering: evaluate f(D) privately.
- Noise addition mechanisms:
 - Generate r.v. X
 - M(D) = f(D) + X
- more privacy \leftarrow larger $X \rightarrow$ less accuracy
- (Constant-sharp) Optimal noise under given privacy constraint?

Quiz: 1-dim

M(D) = f(D) + X.

- Accuracy is measured by $\operatorname{Var}[X]$.
- Question: What noise for $(\varepsilon, 0)$ -DP?
- Textbook: Laplace noise [DMNS 06]

$$\operatorname{Var}[X] = \frac{2}{\varepsilon^2}$$

- Question: What if we relax by δ ?
- Textbook: Gaussian noise [DKMMN 06]

$$\operatorname{Var}[X] = \frac{2}{\varepsilon^2} \cdot \log(1.25\delta^{-1}) > \frac{2}{\varepsilon^2}$$

Quiz: 1-dim

M(D) = f(D) + X.

- Accuracy is measured by Var[X].
- Question: What noise for $(\varepsilon, 0)$ -DP?
- Everyone: Laplace noise [DMNS 06]

$$\operatorname{Var}[X] = \frac{2}{\varepsilon^2}$$

- Question: What if we relax by δ ?
- Everyone: Gaussian noise [DKMMN 06]

$$\operatorname{Var}[X] = \frac{2}{\varepsilon^2} \cdot \log(1.25\delta^{-1}) > \frac{2}{\varepsilon^2}$$

• (ε, δ) done right: truncated Laplace [GDGK 18] Truncate at $\pm h$ with $h = \log(1 + \frac{e^{\varepsilon} - 1}{2\delta})$.

$$\operatorname{Var}[X] = \frac{2}{\varepsilon^2} \cdot \left(1 - \frac{\varepsilon^2 h(h+2)}{\mathrm{e}^h - 1} \right) < \frac{2}{\varepsilon^2}$$

It took 12 years...

- This is a fundamental problem.
- We need a mindset that makes it simple.
- Here's how I visualize and reason about it.
- But we need a slightly more advanced perspective.

Definition (DMNS 06, DKMMN 06)

A randomized algorithm $M: X \to Y$ is (ε, δ) -DP if $\mathbb{P}[M(D') \in E] \leqslant e^{\varepsilon} \mathbb{P}[M(D) \in E] + \delta$

- $E \subseteq Y$ is any event.
- D and D' are arbitrary neighboring databases that differ by one person

$$``M(D) \approx M(D')"$$

 $\delta(\varepsilon) = H_{e^{\varepsilon}}(M(D) \| M(D')) : \mathbb{R}_{>0} \to [0, 1]$

- Equivalent via primal-dual
- Interpretation: FP vs FN in binary classification D vs D'
- Larger = more privacy
- [WZ 10, KOV 15, DRS 19]: M is (ε, δ) -DP iff $T[M(D), M(D')] \ge f_{\varepsilon, \delta}$

$$``M(D) \approx M(D')"$$

$$\delta(\varepsilon) = H_{e^{\varepsilon}}(M(D) || M(D')) : \mathbb{R}_{>0} \to [0, 1]$$
$$T[M(D), M(D')] : [0, 1] \to [0, 1] \qquad ([DRS \ 19])$$

- Equivalent via primal-dual
- Interpretation: FP vs FN in binary classification D vs D'
- Larger = more privacy
- [WZ 10, KOV 15, DRS 19]: M is (ε, δ) -DP iff $T[M(D), M(D')] \ge f_{\varepsilon, \delta}$

$$``M(D) \approx M(D')"$$

$$\delta(\varepsilon) = H_{e^{\varepsilon}}(M(D) || M(D')) : \mathbb{R}_{>0} \to [0, 1]$$
$$T[M(D), M(D')] : [0, 1] \to [0, 1] \qquad ([DRS \ 19])$$

- Equivalent via primal-dual
- Interpretation: FP vs FN in binary classification D vs D'
- Larger = more privacy
- [WZ 10, KOV 15, DRS 19]: M is (ε, δ) -DP iff $T[M(D), M(D')] \ge f_{\varepsilon, \delta}$

$$``M(D) \approx M(D')"$$

$$\delta(\varepsilon) = H_{e^{\varepsilon}}(M(D) || M(D')) : \mathbb{R}_{>0} \to [0, 1]$$
$$T[M(D), M(D')] : [0, 1] \to [0, 1] \qquad ([DRS \ 19])$$

- Equivalent via primal-dual
- Interpretation: FP vs FN in binary classification D vs D'
- Larger = more privacy
- [WZ 10, KOV 15, DRS 19]: M is (ε, δ) -DP iff $T[M(D), M(D')] \ge f_{\varepsilon, \delta}$

$$``M(D) \approx M(D')"$$

$$\delta(\varepsilon) = H_{e^{\varepsilon}}(M(D) || M(D')) : \mathbb{R}_{>0} \to [0, 1]$$
$$T[M(D), M(D')] : [0, 1] \to [0, 1] \qquad ([DRS \ 19])$$

- Equivalent via primal-dual
- Interpretation: FP vs FN in binary classification D vs D'
- Larger = more privacy
- [WZ 10, KOV 15, DRS 19]: M is (ε, δ) -DP iff $T[M(D), M(D')] \ge f_{\varepsilon, \delta}$

M(D) = f(D) + X

X	Privacy	$\operatorname{Var}[X]$
Laplace	(arepsilon,0)	$2/\varepsilon^2$
Gaussian	$(arepsilon,\delta)$	$> 2/\varepsilon^2$
Truncated Laplace	$(arepsilon,\delta)$	$< 2/\varepsilon^2$

• Understand this by comparing

 $f_{\varepsilon,\delta}$ = budget of privacy ROC = actual spend by mechanism

• Which X makes good use of the budget?

Truncation creates a δ

Zoom in comparision

- Want to achieve better accuracy?
- Try to make good use of your privacy budget.

Consider noise-addition mechanisms in \mathbb{R}^d

M(D) = f(D) + X.

- Q: How to choose noise X to fit (ε, δ) budget?
- A: No way!

Theorem (Informal CLT, this work)

When $d \gg 1$, for many X,

ROC of $M \approx \text{ROC}$ of Gaussian $\neq f_{\varepsilon,\delta}$

Details of the statement of CLT

- Consider the mechanism M(D) = f(D) + X where X is log-concave with density $\propto e^{-\varphi(x)}$ where φ is convex.
- WLOG f has ℓ_2 sensitivity 1, i.e. $||f(D) f(D')|| \leq 1$
- WLOG f(D) = 0, f(D') = v where ||v|| = 1, hence T[M(D), M(D')] = T[X, X + v].
- "ROC of $M \approx$ ROC of Gaussian"

$$T[X, X+v] \approx T[G, G+v]$$

where $G = N(0, \Sigma)$ is some Gaussian.

- Normalization:
 - Textbook CLT: $\sum X_i \approx \sum G_i$ if $\mathbb{E}X = \mathbb{E}G$ and $\operatorname{Var}[X] = \operatorname{Var}[G]$.
 - Our CLT:

$$T[X, X+v] \approx T[G, G+v]$$
 if $\mathcal{I}_X = \mathcal{I}_G$

where $\mathcal{I}_X = \mathbb{E} \nabla \varphi(X) \nabla \varphi(X)^T$ is the $d \times d$ Fisher information matrix.

Details of the statement of CLT, cont'd.

$$T[X, X+v] \approx T[G, G+v] \quad \text{if} \quad \mathcal{I}_X = \mathcal{I}_G$$
 (1)

- Remember this is a high-dimensional phenomenon
- Unfortunately, high-dimensional DP algorithm can exhibit 1-d behavior
- When $v = (1, 0, ..., 0), T[X, X + v] = T[X_1, X_1 + 1]$ where $X_1 \in \mathbb{R}$.
- Solution: exclude a small fraction of v, i.e. (1) holds w.h.p over $v \sim S^{d-1}$.
- For what X?

```
density \propto \exp(-\|Ux\|_p^{\alpha}) where p, \alpha \in [1, +\infty), U orthogonal
```

```
Call this class of densities \mathcal{F}.
```

Theorem (CLT, this work)

For X with densities in \mathcal{F} and $\mathcal{I}_X = I_{d \times d}$, w.p. $\geq 1 - o(1)$ over $v \sim S^{d-1}$,

$$||T[X, X+v] - T[G, G+v]||_{\infty} \leq o(1),$$

where G is Gaussian such that $\mathcal{I}_G = \mathcal{I}_X = I_{d \times d}$.

Proof idea:

Theorem ([V.N.Sudakov 1978])

If X is an isotropic r.v. in \mathbb{R}^d and satisfies "thin shell" condition, then w.p. 1 - o(1) over $v \sim S^{d-1}$, $\langle X, v \rangle \approx N(0, 1)$.

- We show that an analog of Sudakov's theorem holds for a nonlinear projection of X that we call "likelihood projection"
- Our CLT follows easily from this "nonlinear Sudakov".
- Conjectured to be extendable to general log-concave distributions with proper regularity.

Some numerical results

Figure 1: Numerical evaluation of ROC functions for noise addition mechanism M(D) = f(D) + XX has density $\propto e^{-\varphi(x)}$ Dimension d = 30.

So far...

- For d = 1, truncated Laplace fits (ε, δ) budget better and has smaller variance than Gaussian.
- For $d \gg 1$, no hope to fit (ε, δ) . Everything works like Gaussian.

Privacy-Accuracy Trade-off

- (ε, δ) and $d \gg 1$ don't really work together.
- Why not use Gaussian instead of (ε, δ) to measure privacy?
- Exactly what [D-Roth-Su 19] did
- μ -GDP $\Leftrightarrow T[X, X + v] \ge f_{\varepsilon,\delta} T[N(0, 1), N(\mu, 1)]$
- By CLT, $T[X, X + v] \approx T[G, G + v]$
- By linear algebra, $T[G, G + v] = T[N(0, 1), N(\mu, 1)]$ with $\mu^2 = v^T \mathcal{I}_G v$.
- Worst case over $v \in S^{d-1}$: $\mu^2 = \|\mathcal{I}_G\| = \|\mathcal{I}_X\|$.
- That is, adding X is roughly μ -GDP with $\mu^2 = ||\mathcal{I}_X||$.
- By Cramer–Rao,

$$\mathbb{E}||X||_2^2 \cdot ||\mathcal{I}_X|| \ge d.$$

• i.e. mean-squared error satisfies

$$\operatorname{err}_M \cdot \mu^2 \geqslant d$$

• = holds for Gaussian mechanism.

Privacy-Accuracy Trade-off, Cont'd

CLT + Cramer-Rao yields

$$\operatorname{err}_M \cdot \mu^2 \ge d$$

Compared to previously known lower bounds, e.g. [Steinke-Ullman 17]

$$\operatorname{err}_{M} \cdot \frac{\varepsilon^{2}}{\log \delta^{-1}} = \Omega\left(d\right)$$

- No mysterious constant.
- Equality is precisely achievable by Gaussian mechanism.
- Privacy parameter makes more sense, e.g. avoids " $\delta \to 0$ blowing-up" problem

Summary

- CLT: d = 1 and $d \gg 1$ are drastically different.
- CLT + Cramer–Rao: $\operatorname{err}_M \cdot \mu^2 \ge d$

- Generalize CLT to log-concave distributions?
- To distributions with bounded support?
- Gap between "almost all v" and "all v"?
- Other high-dimensional phenomenon in DP? Constant-sharp lower bound there?
- In particular, what if we consider ℓ_{∞} error instead of ℓ_2 error? Constant-sharp optimality of [Dagan-Kur 20]?

Thank you!

• More on [DRS 19]: my blog at dongjs.github.io

@JinshuoD @zlj11112222 @weijie444