

Few-Shot Object Detection via Association and DIscrimination

Yuhang Cao¹ Jiaqi Wang¹[⊠] Ying Jin¹ Tong Wu¹ Kai Chen^{3,4} Ziwei Liu² Dahua Lin^{1,4} ¹The Chinese University of Hong Kong ²S-Lab, Nanyang Technological University ³SenseTime Research ⁴Shanghai AI Laboratory

Few-Shot Object Detection (FSOD)

N-way-*K*-shot: *N* novel classes, each novel class has *K* annotated instances

Fine-turning-based Few-Shot Detector

Frustratingly Simple Few-Shot Object Detection (TFA) (ICML 2020)

Philosafy of the design of ft-based pipeline

Stage II: Few-shot fine-tuning

Frustratingly Simple Few-Shot Object Detection (ICML 2020)

Evil: Misclassification

Fixed feature extractor can yield • similar feature representation of texture similar objects

The box classifier (a single fc) is • not able to accurately classify similar objects

Prediction

Ground Truth

Motivation

- 1. Novel class cow is similar to single base class sheep
- \rightarrow Feature space of cow overlaps with sheep
- \rightarrow Small inter-class separability
- 2. Novel class cow is similar to two base classes sheep and horse
- \rightarrow Feature space of cow scatters across sheep and horse
- \rightarrow Large intra-class variances

Ellipse: feature space of a base class

Our method: FADI

To alleviate the limitations, we propose a two-step fine-tuning framework:

1. Association: compact intra-class structure

- Similarity Measurement
- Feature Distribution Alignment

2. *Discrimination*: ensure enough inter-class separability

- Disentangling
- Set-Specialized Margin Loss

Conceptualization of Association

Align the feature distribution of each novel class with its most semantically similar class

Instantiation of Association

4. Features of novel class shift toward its associated base class

2. Replace the label of novel class with its associated base label

Conceptualization of **Discrimination**

Separate the associated base and novel classes by disentangling and margin loss

Instantiation of **Discrimination**

Step1: Association

Set-Specialized Margin Loss

Cosine classifier: adopt cosine similarity to formulate the logit prediction

$$p_{y_i} = rac{ au \cdot \mathbf{x}^T \mathcal{W}_{y_i}}{||\mathbf{x}|| \cdot ||\mathcal{W}_{y_i}||}, \quad s_{y_i} = rac{e^{p_{y_i}}}{\sum_{j=1}^C e^{p_j}},$$

Maximizing the score difference of different classes

$$\mathcal{L}_{m_i} = \sum_{j=1, j \neq y_i}^C -\log((s_{y_i} - s_j)^+ + \epsilon),$$
nter-class margin: $s_{y_i} - s_j$

Set-Specialized Margin Loss

Maximizing the score difference of different classes

$$\mathcal{L}_{m_i} = \sum_{j=1, j \neq y_i}^C -\log((s_{y_i} - s_j)^+ + \epsilon),$$

Introducing different margin to different class set

$$\mathcal{L}_{m} = \left[\sum_{\{i|y_{i}\in C^{B}\}} \alpha \cdot \mathcal{L}_{m_{i}}\right] + \left[\sum_{\{i|y_{i}\in C^{N}\}} \beta \cdot \mathcal{L}_{m_{i}}\right] + \left[\sum_{\{i|y_{i}=C^{0}\}} \gamma \cdot \mathcal{L}_{m_{i}}\right],$$

$$\mathcal{C}^{B}: \text{base classes;} \quad \mathcal{C}^{N}: \text{novel classes} \quad \mathcal{C}^{0}: \text{background classes}$$

Effectiveness of FADI

t-SNE visualization of feature distribution of TFA and our FADI

Overall Performance on Pascal VOC

Method / Shot	Backbone	Novel Split 1					Novel Split 2					Novel Split 3				
		1	2	3	5	10	1	2	3	5	10	1	2	3	5	10
LSTD [2]	VGG-16	8.2	1.0	12.4	29.1	38.5	11.4	3.8	5.0	15.7	31.0	12.6	8.5	15.0	27.3	36.3
YOLOv2-ft [29]	YOLO V2	6.6	10.7	12.5	24.8	38.6	12.5	4.2	11.6	16.1	33.9	13.0	15.9	15.0	32.2	38.4
[†] FSRW [12]		14.8	15.5	26.7	33.9	47.2	15.7	15.3	22.7	30.1	40.5	21.3	25.6	28.4	42.8	45.9
[†] MetaDet [29]		17.1	19.1	28.9	35.0	48.8	18.2	20.6	25.9	30.6	41.5	20.1	22.3	27.9	41.9	42.9
[†] RepMet [13]	InceptionV3	26.1	32.9	34.4	38.6	41.3	17.2	22.1	23.4	28.3	35.8	27.5	31.1	31.5	34.4	37.2
FRCN-ft [29]	FRCN-R101	13.8	19.6	32.8	41.5	45.6	7.9	15.3	26.2	31.6	39.1	9.8	11.3	19.1	35.0	45.1
FRCN+FPN-ft [27]		8.2	20.3	29.0	40.1	45.5	13.4	20.6	28.6	32.4	38.8	19.6	20.8	28.7	42.2	42.1
[†] MetaDet [29]		18.9	20.6	30.2	36.8	49.6	21.8	23.1	27.8	31.7	43.0	20.6	23.9	29.4	43.9	44.1
[†] Meta R-CNN [32]		19.9	25.5	35.0	45.7	51.5	10.4	19.4	29.6	34.8	45.4	14.3	18.2	27.5	41.2	48.1
TFA w/ fc [27]		36.8	29.1	43.6	55.7	57.0	18.2	29.0	33.4	35.5	39.0	27.7	33.6	42.5	48.7	50.2
TFA w/ cos [27]		39.8	36.1	44.7	55.7	56.0	23.5	26.9	34.1	35.1	39.1	30.8	34.8	42.8	49.5	49.8
MPSR [30]	FRCN-R101	41.7	-	51.4	55.2	61.8	24.4	-	39.2	39.9	47.8	35.6	-	42.3	48.0	49.7
SRR-FSD [33]		47.8	50.5	51.3	55.2	56.8	32.5	35.3	39.1	40.8	43.8	40.1	41.5	44.3	46.9	46.4
FSCE [22]		44.2	43.8	51.4	61.9	63.4	27.3	29.5	43.5	44.2	50.2	37.2	41.9	47.5	54.6	58.5
FADI (Ours)		50.3	54.8	54.2	59.3	63.2	30.6	35.0	40.3	42.8	48.0	45.7	49.7	49.1	55.0	59.6

New SOTA on shot 1, 2, 3 and 1, 2, 3, 5, 10 on split1 and 3, respectively

Superiority of <u>semantic similarity</u> over <u>visual similarity</u>

A cat sits on a chair

A human rides a bicycle

- **Co-occurrence** can yield misleading visual similarity.
- Text semantic similarity is regardless of **co-occurrance**.

Thank you!