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Motivation

Consider the regression setting, with Zi = {Xi ,Yi} for an outcome of

interest Yi and covariates Xi . Assume that Z1:n+1
iid∼ P, and we observe

Z1:n.

We are concerned with prediction in Bayesian regression:

π(θ | Z1:n)︸ ︷︷ ︸
Posterior

∝
n∏

i=1

fθ(Yi | Xi )︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

The posterior predictive density is:

p(Yn+1 | Xn+1,Z1:n) =

∫
fθ(Yn+1 | Xn+1)π(θ | Z1:n) dθ .
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Motivation

We can summarize the predictive distribution with 1− α credible intervals:

Cα(Xn+1) = [P−1(α/2),P−1(1− α/2)]

where P−1 is the quantile function of P(Yn+1 | Xn+1,Z1:n).

Figure 1: Central (left) and highest density (right) credible intervals; taken from
[Gelman et al., 2013]

I Bayesian intervals have a nice interpretation, but no frequentist
guarantees if the model is misspecified (which it always is)
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Conformal Prediction [Vovk et al., 2005]

Assume Z1:n+1
iid∼ P, we can estimate

E [Yn+1 | Xn+1] ≈ µ̂(Xn+1)

with your predictive algorithm of choice.

Conformal prediction gives us a confidence interval Cα(Xn+1) that
satisfies

P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α.

Note: P is over Z1:n+1.

There are no assumptions on P, and the average width of Cα depends on
the quality of µ̂.

Conformal Bayesian Computation 2021 4 / 15



Conformity Measures

A conformity measure is a function σ : Zn+1 × Z→ R, that measures how
similar a datum is to a bag (unordered set) of data:

σi := σ(Z1, . . . ,Zn+1︸ ︷︷ ︸
Bag

; Zi︸︷︷︸
Datum

).

The most common choice is the (negative) residual:

σi = −|Yi − µ̂(Xi )|

where µ̂ is computed from Z1:n+1 and is permutation-invariant.

Key: If Z1:n+1 are exchangeable, then σ1:n+1 are exchangeable1.

1To see this, imagine swapping Zi ,Zj - this will only swap σi , σj .
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Full Conformal Prediction - Algorithm

Algorithm 1: Conformal Prediction

We have observed Z1:n and Xn+1.
Select miscoverage level α.

for y ∈ R do
Fit regression model µ̂ with augmented data {Z1:n, {y ,Xn+1}}
Compute σ1:n and σn+1

Compute r(y) = Rank(σn+1)
n+1 among σ1:n+1

end
Return region Cα(Xn+1) = {y ∈ R : r(y) > α}.

The above set satisfies P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α.

Note: In practice, we need to select a grid2 y ∈ Y to approximate the
algorithm.

2See [Chen et al., 2016, Chen et al., 2018]
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Conformal Prediction - Summary

Conformal prediction gives us guaranteed confidence intervals Cα(Xn+1):

I We only require exchangeability of the data {Xi ,Yi}i=1:n+1.

I We fit the model to the augmented data set {Z1:n, {y ,Xn+1}}.

Main limitation: Refitting the model for each y ∈ Y and Xn+1 is
expensive!

The split conformal method (e.g. [Lei et al., 2018]) is one way to avoid
this, but produces wider intervals.

Interestingly, Bayesian models provide another possible scalable solution
for full conformal prediction.
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Conformal Bayes - Idea

Given a Bayesian model, a natural conformity score is the “add-one-in”
(AOI) posterior predictive density, which we call conformal Bayes:

σ(Z1:n+1;Zi ) = p(Yi | Xi ,Z1:n+1)

where

p(y | x ,Z1:n+1) =

∫
fθ(y | x)π(θ | Z1:n+1) dθ.

I The predictive is permutation-invariant to Z1:n+1.

I A conforming datum {Yi ,Xi} will have a high density value.
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Refitting Bayes

For each Zn+1 = {y ,Xn+1} with y ∈ Y, we want the updated posterior

π(θ | Z1:n+1) ∝ fθ(y | Xn+1)× π(θ | Z1:n).

Bayesian analysis usually involves Markov Chain Monte Carlo (MCMC) to
provide samples from the posterior, giving us

θ(1:T ) ∼ π(θ | Z1:n).

Key: Use (self-normalized) importance sampling, with q(θ) = π(θ | Z1:n)
as the proposal for p(θ) = π(θ | Z1:n+1).

Here, q usually has heavier tails than p which is helpful for weight stability,
unlike when computing leave-one-out (LOO) predictives.
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Refitting Bayes

For each Zn+1 = {y ,Xn+1} with y ∈ Y, we want to estimate

σi := p(Yi | Xi ,Z1:n+1)︸ ︷︷ ︸
AOI predictive

=

∫
fθ(Yi | Xi ) π(θ | Z1:n+1)︸ ︷︷ ︸

Updated posterior

dθ

for i = 1, . . . , n + 1.

Given θ(1:T ) ∼ π(θ | Z1:n), compute AOI predictive through:

σi ≈
T∑
t=1

w̃ (t)fθ(t)(Yi | Xi )

where

w̃ (t) ∝ π(θ | Z1:n+1)

π(θ | Z1:n)
∝ fθ(t)(y | Xn+1)
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Conformal Bayes - Summary

Conformal Bayes is a cheap post-processing step to produce calibrated
intervals Cα(Xn+1) from MCMC samples:

I Conformity score σi is the AOI posterior predictive density

I Refitting is carried out through efficient importance sampling, where
the weights are well-behaved (compared to LOO)

I Computational complexity is O(nT |Y|), but is very efficient on GPU
due to a matrix multiplication

I We also extend to partial exchangeable data with Bayesian
hierarchical models
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Example

Diabetes dataset [Efron et al., 2004] contains n = 442 subjects.
Y is diabetes progression and X is patient readings (d = 10).

The Bayesian linear model:

fθ(y | x) = N (y | θTx + θ0, τ
2)

Sparse prior:

π(θj) = Laplace(0, b), π(θ0) ∝ 1

π(b) = Gamma(1, 1), π(τ) = N+(0, c).

For the variance prior, c = 1 is well-specified, and c = 0.02 is misspecified.
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Example

We carry out 50 repeats of train/test (70/30) splits to evaluate coverage
and lengths of intervals on Yn+1.

MCMC overhead required ≈ 25s for T = 8000. We set the grid to
[ymin − 2, ymax + 2] with |Y| = 100.

Table 1: Diabetes; Coverage values not within 3 standard errors (in brackets) of the
target coverage (1 − α) = 0.8 are in red; c = 0.02 is misspecified.

Bayes Conformal Bayes

Coverage c = 1 0.806 (0.005) 0.808 (0.006)
c = 0.02 0.563 (0.006) 0.809 (0.006)

Length c = 1 1.84 (0.01) 1.87 (0.01)
c = 0.02 1.14 (0.00) 1.87 (0.01)

Run-time c = 1 0.488 (0.107) 0.702 (0.019)
(secs) c = 0.02 0.373 (0.002) 0.668 (0.003)
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Conclusions

Conformal Bayes: Use the Bayesian posterior predictive density as the
conformity measure

I Provides guaranteed coverage under model misspecification and can
be used to diagnose Bayesian miscalibration

I A general wrapper around MCMC output like Stan, PyMC3, etc.
based on importance sampling

I Enables full conformal inference for a wider class of models

Thank you for your attention!
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