# Conformal Bayesian Computation

Edwin Fong University of Oxford The Alan Turing Institute

Joint work with Chris Holmes (Oxford, Turing)

NeurIPS 2021

#### Motivation

Consider the regression setting, with  $Z_i = \{X_i, Y_i\}$  for an outcome of interest  $Y_i$  and covariates  $X_i$ . Assume that  $Z_{1:n+1} \stackrel{\text{iid}}{\sim} P$ , and we observe  $Z_{1:n}$ .

We are concerned with *prediction* in Bayesian regression:

$$\underbrace{\pi(\theta \mid Z_{1:n})}_{\text{Posterior}} \propto \prod_{i=1}^{n} \underbrace{f_{\theta}(Y_i \mid X_i)}_{\text{Likelihood}} \underbrace{\pi(\theta)}_{\text{Prior}}$$

The posterior predictive density is:

$$p(Y_{n+1} \mid X_{n+1}, Z_{1:n}) = \int f_{\theta}(Y_{n+1} \mid X_{n+1}) \pi(\theta \mid Z_{1:n}) d\theta$$

We can summarize the predictive distribution with 1 –  $\alpha$  credible intervals:

$$C_{\alpha}(X_{n+1}) = [P^{-1}(\alpha/2), P^{-1}(1-\alpha/2)]$$

where  $P^{-1}$  is the quantile function of  $P(Y_{n+1} | X_{n+1}, Z_{1:n})$ .



Figure 1: Central (left) and highest density (right) credible intervals; taken from [Gelman et al., 2013]

 Bayesian intervals have a nice interpretation, but no frequentist guarantees if the model is misspecified (which it always is) Assume  $Z_{1:n+1} \stackrel{\text{iid}}{\sim} P$ , we can estimate

```
E[Y_{n+1} \mid X_{n+1}] \approx \hat{\mu}(X_{n+1})
```

with your predictive algorithm of choice.

**Conformal prediction** gives us a confidence interval  $C_{\alpha}(X_{n+1})$  that satisfies

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) \geq 1 - \alpha.$$

**Note:** *P* is over  $Z_{1:n+1}$ .

There are no assumptions on P, and the average width of  $C_{\alpha}$  depends on the quality of  $\hat{\mu}$ .

# Conformity Measures

A conformity measure is a function  $\sigma : \mathbb{Z}^{n+1} \times \mathbb{Z} \to \mathbb{R}$ , that measures how similar a datum is to a **bag** (unordered set) of data:

$$\sigma_i := \sigma(\underbrace{Z_1, \ldots, Z_{n+1}}_{\text{Bag}}; \underbrace{Z_i}_{\text{Datum}}).$$

The most common choice is the (negative) residual:

$$\sigma_i = -|Y_i - \hat{\mu}(X_i)|$$

where  $\hat{\mu}$  is computed from  $Z_{1:n+1}$  and is permutation-invariant.

**Key**: If  $Z_{1:n+1}$  are exchangeable, then  $\sigma_{1:n+1}$  are exchangeable<sup>1</sup>.

<sup>1</sup>To see this, imagine swapping  $Z_i, Z_j$  - this will only swap  $\sigma_i, \sigma_j$ .

#### Algorithm 1: Conformal Prediction

We have observed  $Z_{1:n}$  and  $X_{n+1}$ . Select miscoverage level  $\alpha$ .

for  $y \in \mathbb{R}$  do

Fit regression model  $\hat{\mu}$  with *augmented* data  $\{Z_{1:n}, \{y, X_{n+1}\}\}$ 

Compute  $\sigma_{1:n}$  and  $\sigma_{n+1}$ 

Compute 
$$r(y) = \frac{\operatorname{Rank}(\sigma_{n+1})}{n+1}$$
 among  $\sigma_{1:n+1}$ 

end

Return region  $C_{\alpha}(X_{n+1}) = \{y \in \mathbb{R} : r(y) > \alpha\}.$ 

The above set satisfies  $P(Y_{n+1} \in C_{\alpha}(X_{n+1})) \ge 1 - \alpha$ .

**Note:** In practice, we need to select a grid<sup>2</sup>  $y \in \mathcal{Y}$  to approximate the algorithm.

<sup>2</sup>See [Chen et al., 2016, Chen et al., 2018]

Conformal prediction gives us guaranteed confidence intervals  $C_{\alpha}(X_{n+1})$ :

- We only require exchangeability of the data  $\{X_i, Y_i\}_{i=1:n+1}$ .
- We fit the model to the *augmented* data set  $\{Z_{1:n}, \{y, X_{n+1}\}\}$ .

**Main limitation:** Refitting the model for each  $y \in \mathcal{Y}$  and  $X_{n+1}$  is expensive!

The split conformal method (e.g. [Lei et al., 2018]) is one way to avoid this, but produces wider intervals.

Interestingly, Bayesian models provide another possible scalable solution for *full* conformal prediction.

Given a Bayesian model, a natural conformity score is the "add-one-in" (AOI) posterior predictive density, which we call **conformal Bayes**:

$$\sigma(Z_{1:n+1}; Z_i) = p(Y_i \mid X_i, Z_{1:n+1})$$

where

$$p(y \mid x, Z_{1:n+1}) = \int f_{\theta}(y \mid x) \pi(\theta \mid Z_{1:n+1}) d\theta.$$

- The predictive is permutation-invariant to  $Z_{1:n+1}$ .
- A conforming datum  $\{Y_i, X_i\}$  will have a high density value.

# **Refitting Bayes**

# For each $Z_{n+1} = \{y, X_{n+1}\}$ with $y \in \mathcal{Y}$ , we want the updated posterior $\pi(\theta \mid Z_{1:n+1}) \propto f_{\theta}(y \mid X_{n+1}) \times \pi(\theta \mid Z_{1:n}).$

Bayesian analysis usually involves Markov Chain Monte Carlo (MCMC) to provide samples from the posterior, giving us

$$\theta^{(1:T)} \sim \pi(\theta \mid Z_{1:n}).$$

**Key:** Use (self-normalized) importance sampling, with  $q(\theta) = \pi(\theta \mid Z_{1:n})$  as the proposal for  $p(\theta) = \pi(\theta \mid Z_{1:n+1})$ .

Here, q usually has heavier tails than p which is helpful for weight stability, unlike when computing leave-one-out (LOO) predictives.

#### **Refitting Bayes**

For each  $Z_{n+1} = \{y, X_{n+1}\}$  with  $y \in \mathcal{Y}$ , we want to estimate

$$\sigma_{i} := \underbrace{p(Y_{i} \mid X_{i}, Z_{1:n+1})}_{\text{AOI predictive}} = \int f_{\theta}(Y_{i} \mid X_{i}) \underbrace{\pi(\theta \mid Z_{1:n+1})}_{\text{Updated posterior}} d\theta$$

for i = 1, ..., n + 1.

Given  $\theta^{(1:T)} \sim \pi(\theta \mid Z_{1:n})$ , compute AOI predictive through:

$$\sigma_i \approx \sum_{t=1}^T \tilde{w}^{(t)} f_{\theta^{(t)}}(Y_i \mid X_i)$$

where

$$ilde{w}^{(t)} \propto rac{\pi( heta \mid Z_{1:n+1})}{\pi( heta \mid Z_{1:n})} \propto f_{ heta^{(t)}}(y \mid X_{n+1})$$

Conformal Bayes is a cheap post-processing step to produce calibrated intervals  $C_{\alpha}(X_{n+1})$  from MCMC samples:

- Conformity score  $\sigma_i$  is the AOI posterior predictive density
- Refitting is carried out through efficient importance sampling, where the weights are well-behaved (compared to LOO)
- ► Computational complexity is O(nT|Y|), but is very efficient on GPU due to a matrix multiplication
- We also extend to partial exchangeable data with Bayesian hierarchical models

Diabetes dataset [Efron et al., 2004] contains n = 442 subjects. Y is diabetes progression and X is patient readings (d = 10).

The Bayesian linear model:

$$f_{\theta}(y \mid x) = \mathcal{N}(y \mid \theta^{\mathrm{T}}x + \theta_0, \tau^2)$$

Sparse prior:

$$egin{aligned} \pi( heta_j) &= \mathsf{Laplace}(0,b), & \pi( heta_0) \propto 1 \ \pi(b) &= \mathsf{Gamma}(1,1), & \pi( au) &= \mathcal{N}^+(0,c). \end{aligned}$$

For the variance prior, c = 1 is well-specified, and c = 0.02 is misspecified.

## Example

We carry out 50 repeats of train/test (70/30) splits to evaluate coverage and lengths of intervals on  $Y_{n+1}$ .

MCMC overhead required  $\approx 25s$  for T = 8000. We set the grid to  $[y_{min} - 2, y_{max} + 2]$  with  $|\mathcal{Y}| = 100$ .

Table 1: Diabetes; Coverage values *not* within 3 standard errors (in brackets) of the target coverage  $(1 - \alpha) = 0.8$  are in red; c = 0.02 is misspecified.

|          |                 | Bayes                | Conformal Bayes |
|----------|-----------------|----------------------|-----------------|
| Coverage | c = 1           | 0.806 (0.005)        | 0.808 (0.006)   |
|          | c = 0.02        | <b>0.563</b> (0.006) | 0.809 (0.006)   |
| Length   | c = 1           | 1.84 (0.01)          | 1.87 (0.01)     |
|          | c = 0.02        | 1.14 (0.00)          | 1.87 (0.01)     |
| Run-time | c = 1           | 0.488 (0.107)        | 0.702 (0.019)   |
| (secs)   | <i>c</i> = 0.02 | 0.373 (0.002)        | 0.668 (0.003)   |

**Conformal Bayes**: Use the Bayesian posterior predictive density as the conformity measure

- Provides guaranteed coverage under model misspecification and can be used to diagnose Bayesian miscalibration
- A general wrapper around MCMC output like Stan, PyMC3, etc. based on importance sampling
- ► Enables full conformal inference for a wider class of models

Thank you for your attention!

#### References



Chen, W., Chun, K.-J., and Barber, R. F. (2018). Discretized conformal prediction for efficient distribution-free inference. *Stat*, 7(1):e173.



Chen, W., Wang, Z., Ha, W., and Barber, R. F. (2016). Trimmed conformal prediction for high-dimensional models. *arXiv preprint arXiv:1611.09933.* 



Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression. *Annals of statistics*, 32(2):407–499.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). *Bayesian Data Analysis.* CRC Press.

Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-free predictive inference for regression. *Journal of the American Statistical Association*, 113(523):1094–1111.

Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic learning in a random world*. Springer Science & Business Media.