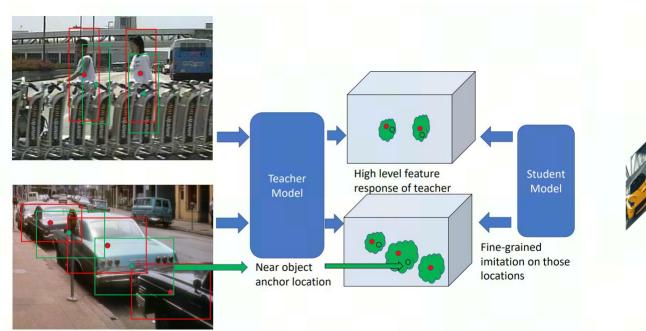
Distilling Object Detectors with Feature Richness

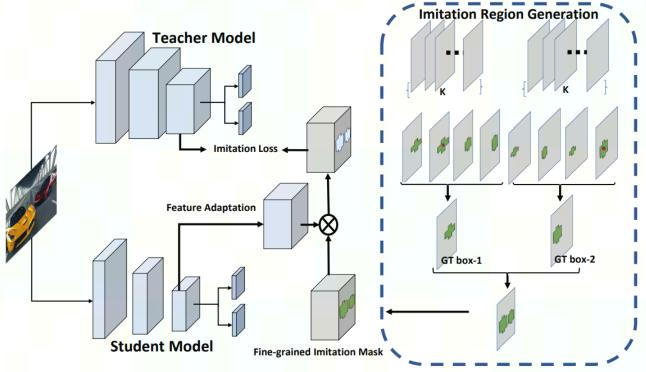
```
Zhixing Du <sup>1,2,3</sup> Rui Zhang <sup>2,3</sup> * Ming Chang <sup>3</sup>

Xishan Zhang <sup>2,3</sup> Shaoli Liu <sup>3</sup> Tianshi Chen <sup>3</sup> Yunji Chen <sup>2,4</sup>

<sup>1</sup>University of Science and Technology of China

<sup>2</sup>SKL of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China

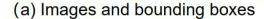

<sup>3</sup>Cambricon Technologies, China


<sup>4</sup>University of Chinese Academy of Sciences, China

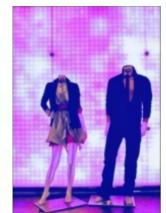
dzx1@mail.ustc.edu.cn

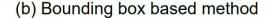
{zhangrui,zhangxishan,cyj}@ict.ac.cn
{changming,liushaoli,tchen}@cambricon.com
```

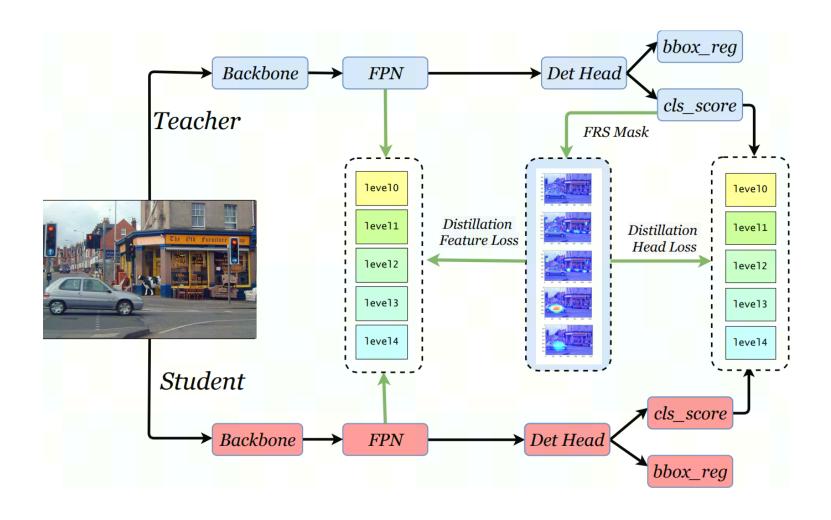
Knowledge Distillation In the field of object detection

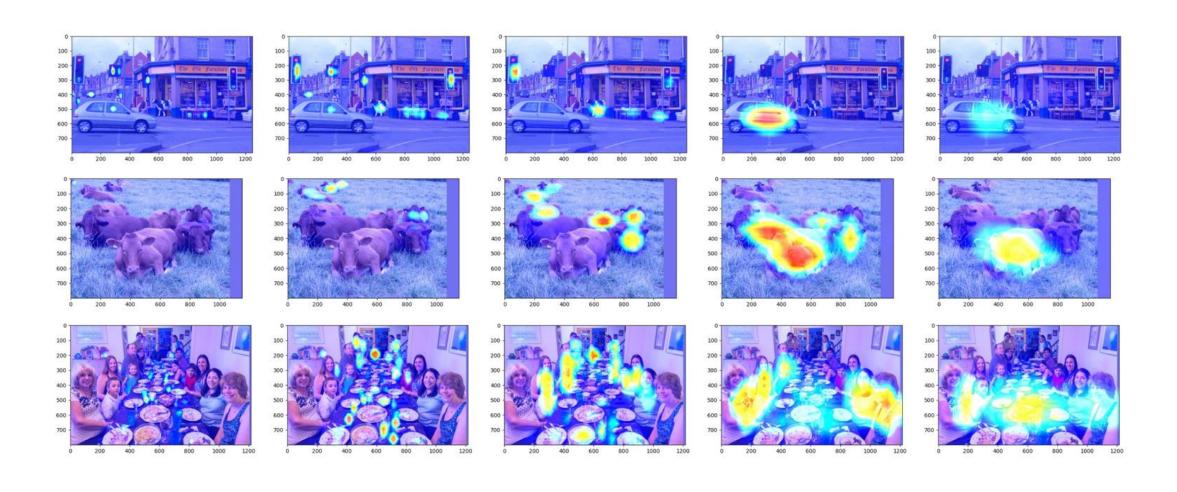


Two limitations of traditional methods

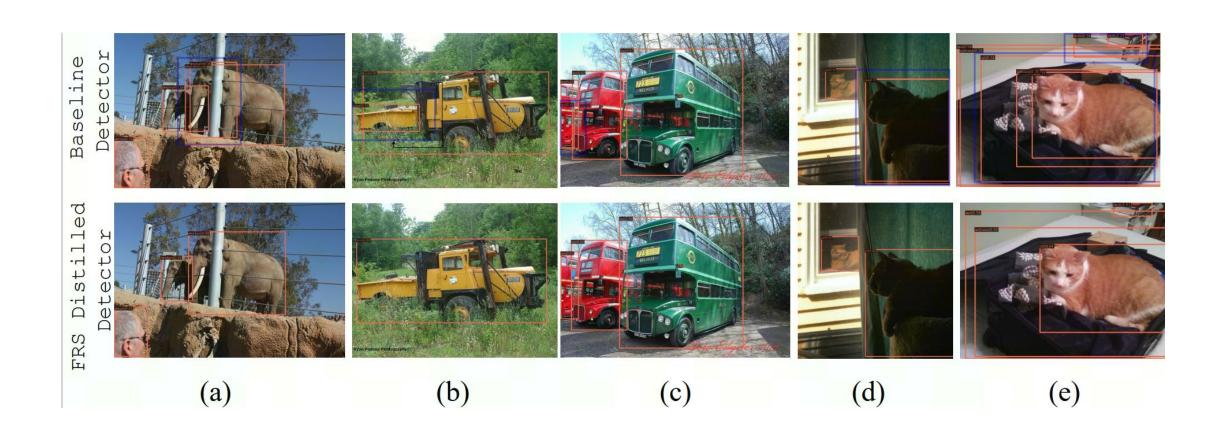

- They Ignore the beneficial features outside the bounding boxes
- These methods imitate some features which are mistakenly regarded as the background by the teacher detector







(c) Ours


Our Methods

Mask in Different layers of FPN

Experimental effect

Experiments of different detector

	1 10 1050			1055 10 C 10 15 10 1			
	mode	mAP	AP50	AP75	AP_S	AP_M	AP_L
Retina-Res101(teacher)	2x	38.9	58.0	41.5	21.0	42.8	52.4
Retina-Res50(student)	2x	37.4	56.7	39.6	20.0	40.7	49.7
ours	2x	39.7	58.6	42.4	21.8	43.5	52.4
gain		+2.3	+1.9	+2.8	+1.8	+2.8	+2.7
GFL-Resnet101(teacher)	2x	44.9	63.1	49.0	28.0	49.1	57.2
GFL-Resnet50(student)	1x	40.2	58.4	43.3	23.3	44.0	52.2
ours	1x	43.6	61.9	47.5	25.9	47.7	56.4
gain		+3.4	+3.5	+4.2	+2.6	+3.7	+4.2
GFL-Resnet101(teacher)	2x	44.9	63.1	49.0	28.0	49.1	57.2
GFL-Resnet50(student)	2x	42.9	61.2	46.5	27.3	46.9	53.3
ours	2x	44.7	63.0	48.4	28.7	49.0	56.7
gains		+1.8	+1.8	+1.9	+1.4	+2.1	+3.4
Faster-Res101(teacher)	1x	39.4	60.1	43.1	22.4	43.7	51.1
Faster-Res50(student)	1x	37.4	58.1	40.4	21.2	41.0	48.1
ours	1x	39.5	60.1	43.3	22.3	43.6	51.7
gains		+2.1	+2.0	+2.9	+1.1	+2.6	+3.6
FCOS-Resnet101(teacher)	2x	40.8	60.0	44.0	24.2	44.3	52.4
FCOS-Resnet50(student)	2x	38.5	57.7	41.0	21.9	42.8	48.6
ours	2x	40.9	60.3	43.6	25.7	45.2	51.2
gains		+2.4	+2.6	+2.6	+3.8	+2.4	+2.6

Table 1: Results of the proposed method with different detection frameworks. we use 2x learning schedule to train 24 epochs or the 1x learning schedule to train 12 epochs on COCO dataset.

Different Modules

Retina-Res50 Retina-Res101	√	√	✓	√	√
FPN layers Classification Head			✓	√	√ ✓
mAP	37.4	38.9	39.4	38.4	39.7

Table 3: Ablation Study for various distillation modules on COCO dataset