# LeadCache: Regret-Optimal Caching in Networks

# **Abhishek Sinha**

Assistant Professor of EE

**IIT Madras** 

### Debjit Paria

Chennai Mathematical Institute

NeurIPS 21

Tuesday 12<sup>th</sup> October, 2021



▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

## The Network Caching Problem

Consider the problem of retrieving movies from the Netflix servers



Schematic of a Content Distribution Network (CDN)

**Problem:** How to predict the future file requests and cache the files optimally across thousands of servers distributed across the globe?



### History and Related Work

- The caching (a.k.a. paging) problem has been studied for more than sixty years
- Two distinct lines of work:
  - Adversarial requests: minimizes the Competitive Ratio.
  - Stochastic requests: maximizes the hit-rate (e.g., with Zipf's popularity distribution). Recently, there has been a surge of activities on coded caching as well.
- Due to the complex interactions among the caches, the majority of the works on network caching assume a stochastic model
  - Negative result in the adversarial setting: Unbounded competitive ratio for deterministic algorithms (Vaze et al. 2016)
- With volatile content popularity, the stationarity assumption does not hold in practice
  - Need a learning-based policy that can learn the transient file-request patterns on-the-fly
- Our contribution: <u>Uncoded</u> network caching to minimize <u>regret</u> using tools from online learning theory

## **Bipartite Caching**



Dipartite-network

- $\bullet\,$  Network given by a Bipartite Graph  ${\cal G}$
- User *i* is connected to cache *j* iff it can retrieve a file from cache *j* in the original network

• Each cache has a limited storage capacity of C files

## Notations

- Cache Configuration:  $y_t^i \in \{0, 1\}^N$  denotes the set of files in cache j at time t, with  $\sum_{f=1}^N y_{t,f}^j \leq C$ .
- File Requests:  $x_t^i \in \{0,1\}^N$  is the requested file by user i at time t, with  $\sum_{f=1}^N x_{t,f}^i = 1$ .



## Problem Statement

- A user receives a cache-hit if the requested file is currently stored in at least any one of the caches connected to the user.
- The reward at slot t is given by the total number of cache-hits:

$$q(\mathbf{x}_t, \mathbf{y}_t) \equiv \sum_{i \in \mathcal{I}, f \in [N]} x_f^i(t) \cdot \left( \min\left(1, \sum_{j \in \partial^+(i)} y_f^j\right) \right).$$

- The user requests are decided by the adversary and the online policy decides the cache configuration before the requests arrive at each slot.
- Performance metrics: (1) Hit rate (measured by Static regret):

$$\mathbb{E}(R^{\pi}(T)) \stackrel{\text{(def.)}}{=} \mathbb{E}\left[\sup_{\{\boldsymbol{x}_t\}_{t=1}^T} \left(\sum_{t=1}^T q(\boldsymbol{x}_t, \boldsymbol{y}^*) - \sum_{t=1}^T q(\boldsymbol{x}_t, \boldsymbol{y}_t^{\pi})\right)\right]$$

where  $\mathbf{y}^* = \arg \max_{\mathbf{y} \in \mathcal{Y}} \sum_{t=1}^{T} q(\mathbf{x}_t, \mathbf{y})$ , the best fixed offline configuration (2) Cache refresh rate - need to minimize to avoid network congestion

## Warm up: Single Cache results [Bhattacharjee et al. 2020]



• Lower bound: For any  $N \ge 2C$ , the regret of any online caching policy  $\pi$  is lower bounded as

$$R_T^{\pi} \geq \sqrt{\frac{CT}{2\pi}} - \Theta(\frac{1}{\sqrt{T}}).$$

• Upper-Bound: A Follow-the-Perturbed Leader (FTPL)-based caching policy (described next) achieves

$$\mathbb{E}(R_T^{\pi}) \leq 1.51(\log(N/C))^{1/4}\sqrt{CT}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Single Cache Policy

- As the requests are adversarial, the greedy strategy of storing the *C* most frequently requested files <u>does not</u> work.
- Surprisingly, the above strategy works if we add independent noise to the frequency counts!

#### Follow The Perturbed Leader for single cache

Add scaled standard Gaussian noise to the cumulative file count X(t), and then cache the top C files, i.e.,

$$m{y}_t = \operatorname*{argmax}_{c \in \mathcal{C}} \langle m{\Theta}(t), c 
angle$$

where  $\Theta(t) = \mathbf{X}(t) + \eta \gamma$  and  $\gamma \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{1}_{N \times 1}), \eta = O(\sqrt{T}).$ 

Observations:

- The FTPL policy fetches at most one file at a slot, and hence, is bandwidth efficient.
- Popular caching policies, such as LRU, LFU, FIFO, MARKER are provably sub-optimal as they all have linear regret.

#### Design of The LeadCache Policy

- The main obstacle in extending the previous FTPL policy is the *non-linearity* of the reward function.
- To get around this issue, we switch to a virtual action domain  $\mathcal{Z}$

$$q(\boldsymbol{x}_t, \boldsymbol{y}_t) \equiv \sum_{i \in \mathcal{I}} \boldsymbol{x}^i(t) \cdot \underbrace{\left(\min\left(\mathbf{1}, \sum_{j \in \partial^+(i)} \boldsymbol{y}^j\right)\right)}_{\geq \boldsymbol{z}(t)}$$

 At every step we need to "solve" an Integer Linear Program (more about this later) and then apply FTPL:

$$oldsymbol{z}_t \in rg\max_{z\in\mathcal{Z}}igg(\sum_{i\in\mathcal{I}}oldsymbol{\Theta}_i(t)\cdotoldsymbol{z}_iigg),$$



## Achievability and Converse

Theorem (Achievability)

The expected regret for the LeadCache policy is upper bounded by:

$$\mathbb{E}(R_T^{LeadCache}) \leq k n^{3/4} d^{1/4} \sqrt{mCT},$$

where k = O(poly-log(N/C)), n denotes the number of users and d is the maximum number of connected users per cache.

#### Theorem (Converse)

For a large enough library of size  $N \ge \max\left(2\frac{d^2Cm}{n}, 2mC\right)$  the regret  $R_T^{\pi}$  of any online caching policy  $\pi$  is lower bounded by:

$$R_T^{\pi} \geq \max\left(\sqrt{rac{mnCT}{2\pi}}, d\sqrt{rac{mCT}{2\pi}}
ight) - \Theta(rac{1}{\sqrt{T}}).$$

These two Theorems, taken together, implies that LeadCache is regret optimal up to a factor of  $\tilde{O}(n^{3/8})$ .

#### Bounding the Number of Cache Refreshes

- We now consider bounding the frequency of cache-refreshes under the following stochastic assumption.
- Stochastic Regularity Assumption: There exists a set of non-negative numbers  $\{p_{f}^{i}\}_{i \in \mathcal{I}, f \in [N]}$  such that for any  $\epsilon > 0$ , we have:

$$\sum_{t=1}^{\infty} \mathbb{P}\left( \left| \frac{\boldsymbol{X}_{f}^{i}(t)}{t} - \boldsymbol{p}_{f}^{i} \right| \geq \epsilon \right) < \infty, \quad \forall i \in \mathcal{I}, f \in [N].$$
(1)

The above condition necessarily implies (via the First Borel-Cantelli Lemma)

$$\frac{\boldsymbol{X}_{f}^{i}(t)}{t} \to \boldsymbol{p}_{f}^{i}, \quad \text{a.s.}, \forall i \in \mathcal{I}, f \in [N].$$
(2)

#### Theorem (Finite downloads)

Under the above regularity assumption, the file fetches to the caches stop after a finite time with probability 1.

## Approximation Algorithm - 1 (Pipage, deterministic)

- The ILP in LeadCache is indeed NP-Hard in the worst-case :(
- Approx. Algorithm 1: Pipage rounding [Ageev and Sviridenko 2004] for rounding y\* to an integral solution
- Consider the surrogate loss function corresponding to  $L(\mathbf{y})$

$$\phi(oldsymbol{y}) = \sum_{i,f} ( heta_f^i(t))^+ ig(1 - \prod_{j\in \partial^+(i)} (1-y_f^j)ig)$$

- Observe that, keeping  $\mathbf{y}^{-j}$  fixed,  $\phi(\mathbf{y})$  is linear in each  $\mathbf{y}^j$
- Approximation Lemma

$$L(\mathbf{y}) \ge \phi(\mathbf{y}) \ge \left(1 - (1 - \frac{1}{\Delta})^{\Delta}\right) L(\mathbf{y}),$$

where  $\Delta \equiv \max_{i \in \mathcal{I}} |\partial^+(i)|$ .

- The Pipage procedure rounds the solution vector iteratively such that {φ(y<sub>t</sub>)}<sub>t≥1</sub> is non-decreasing, yielding an approximation guarantee of 1 − 1/e.
- However, Pipage does not necessarily yield a sub-linear regret guarantee.

# Approximation Algorithm - 2 (Randomized)

#### • Algorithm 2:

- Relax the ILP to an LP
- Randomly sample C files from each caches using Madow's systematic sampling with the inclusion probability vector obtained from the LP

#### Theorem ( $\alpha$ -sublinear regret)

The above rounding scheme runs in linear time and yields an  $1 - \frac{1}{e}$ -regret guarantee of  $\tilde{O}(n^{3/4}\sqrt{dmCT})$ .

**Observation:** Although the randomized rounding with Madow's sampling is theoretically sound, in practice, the Pipage rounding-based scheme yields better performance.

#### Proof Sketch for Achievability

• Following [Cohen et al. 2015], we consider the Gaussian smoothing of the support function:

$$\phi_{\eta_t}(\boldsymbol{x}) = \mathbb{E}_{\boldsymbol{\gamma}} \max_{\boldsymbol{z} \in \mathcal{Z}} \left[ \langle \boldsymbol{z}, \boldsymbol{x} + \eta_t \boldsymbol{\gamma} \rangle \right]$$

• This implies that  $\nabla \phi_{\eta_t}(\boldsymbol{X}_t) = \mathbb{E} \langle \hat{\boldsymbol{z}}_t, \boldsymbol{x}_t \rangle$  and an application of Stein's lemma gives

$$(\nabla^2 \phi_{\eta_t}(\boldsymbol{X}_t))_{\boldsymbol{p},\boldsymbol{q}} = \frac{1}{\eta_t} \mathbb{E}(\hat{\boldsymbol{z}}_{\boldsymbol{p}} \boldsymbol{\gamma}_{\boldsymbol{q}}),$$

where each of the indices p and q are (user, file) tuples.

• Using Taylor's series expansion, the regret can be bounded as

$$\mathbb{E}(\mathcal{R}_{\mathcal{T}}) \leq \underbrace{\phi_{\eta}(\boldsymbol{X}_{1})}_{\text{Gaussian Complexity}} + \sum_{t=1}^{T} \left( \phi_{\eta_{t+1}}(\boldsymbol{X}_{t+1}) - \phi_{\eta_{t}}(\boldsymbol{X}_{t+1}) \right) + \frac{1}{2} \sum_{t=1}^{T} \boldsymbol{x}_{t} \nabla^{2} \phi_{\eta_{t}}(\boldsymbol{\tilde{X}}_{t}) \boldsymbol{x}_{t}.$$

• The final regret bound is obtained by carefully bounding each of the above three terms by exploiting the structure of the problem.

#### Proof sketch for the Minimax Lower Bound

- We use Probabilistic methods with statistically dependent file requests all users request the same file chosen uniformly at random
- The non-linearity of the reward function makes evaluation of the optimal offline reward OPT\* challenging
  - Need to compute  $\mathbb{E}(\max_{all joint configurations}[ Total Hits ])$
- However, OPT\* can be lower bounded by a class of cache configurations satisfying a certain local exclusivity property
  - All caches connected to each user host distinct files
- Observation: Under the local-exclusivity constraint, the reward function becomes Linear
- To obtain the tightest lower bound for OPT\*, we need to design the best caching configuration  $y_{\perp}$  with the local exclusivity constraint

## Ingredient 1: Brook's theorem for Graph Coloring



Construction of the caching configuration  $y_{\perp}$ .

- Using Brook's theorem, we find a near-minimal coloring of the caches so that local exclusivity holds
- The most frequent half of the files are assigned to the caches; caches with distinct colors receive distinct files.

### Ingredient 2: Balls-into-Bins

• The reward accrued by the offline optimal policy is closely related to the load  $M_C(T)$  in the most-occupied C bins when T balls are thrown u.a.r. into 2C bins



Illustrating the construction of Super bins

• To lower bound this quantity, we pair up the bins and lower bound  $M_C(T)$  by the summation of max-load in each pair, which yields

$$\mathbb{E}(M_C(T)) \geq \frac{T}{2} + \sqrt{\frac{CT}{2\pi}} - \Theta(\frac{1}{\sqrt{T}}).$$

イロト イヨト イヨト イヨト 三日

#### **Experimental Results**

Dataset: CDN trace with  $\sim 375K$  requests. We consider n = 30 users randomly connected to m = 15 caches.



Impact: 1.8× increase in the hit-rates over the state-of-the-art Code available at https://github.com/AbhishekMITIITM/LeadCache-NeurIPS21

#### **Open Problems**

- The classical notion of regret compares the performance of a policy against a clairvoyant but fixed action throughout
- In dynamic environments, fixed actions typically yield poor performance
- A stronger guarantee was obtained by Feder et al. [1992] who obtained sublinear regret guarantee against all Finite State Machine Predictors for the Binary prediction problem
  - They combine Lempel-Ziv (78) parsing with online learning methods for achieving this result
- Problem 1: Is it possible to extend the LeadCache policy, in particular, and OCO algorithms, in general, to have a sublinear regret guarantee against all Finite State Machines?
- **Problem 2:** If some users request unpopular content, LeadCache might virtually ignore them. How to design a network caching policy that is fair to all users?



# Thank You!



For questions, please email me at: abhishek.sinha@ee.iitm.ac.in