

ByteDance

All Tokens Matter: Token Labeling for Training Better Vision Transformers

Zihang Jiang ¹ Qibin Hou ¹ Li Yuan ¹ Daquan Zhou ¹ Yujun Shi ¹ Xiaojie Jin ² Anran Wang ² Jiashi Feng ¹ National University of Singapore ¹ ByteDance ²

Outline

- Background
- Problems and improvements
- Introduction
- Method
- Experiment & analysis

Background

Attention mechanism

Scaled Dot-Product Attention

1 December 2021

Background

• Vision Transformer:

Problems and Improvements

• Problems of ViT:

- Need lots of training data to avoid overfitting
- Only utilize a single class token for prediction

Improvements

- Propose **token labelling objective** to improve the training of transformerbased visual models
- takes advantage of both the **patch tokens** and the **class tokens**

Introduction

Performance drop

 When train on "small" dataset like ImageNet 1k, ResNet50 outperforms large ViT models.

Comparison of different pre-training

Introduction

Standard training vs Token labeling

Improve training using

dense token-level supervision

Input Image

Method

Detail of token labeling objective

Output Tokens

Patch Tokens

Dense score map

Input Image

1 December 2021

Token Labelling for Training Better Vision Transformers

Token Labeling

A Sequence of Transformer Encoders

Patch Embedding of Flattened Patches

Class

Class Token

Method

Loss function

Token labeling loss:

$$L_{tl} = \frac{1}{N} \sum_{i=1}^{N} H(X^i, y^i).$$

Total loss:

$$L_{total} = H(X^{cls}, y^{cls}) + \beta \cdot L_{tl},$$

= $H(X^{cls}, y^{cls}) + \beta \cdot \frac{1}{N} \sum_{i=1}^{N} H(X^{i}, y^{i}),$

1 December 2021

Method

Label generation

We use state-of-the-art model NFNet-F6 as machine annotator

1 December 2021

Model scaling with token labeling

• Consistent improvement with respect to different model size.

Name	Depth	Embed dim.	MLP Ratio	#Heads	#Params	Throughput (im/s)	Test size	Top-1 Acc. (%)
LV-ViT-T	12	240	3.0	4	8.5M	2032.6	224	79.1
LV-ViT-S	16	384	3.0	6	26M	1018.2	224	83.3
LV-ViT-M	20	512	3.0	8	56M	668.9	224	84.1
LV-ViT-L	24	768	3.0	12	150M	204.8	288	85.3

Comparison with SOTA On ImageNet

State-of-the-art Performance with less params and computation

Netwo	rk	Params	FLOPs	Train size	Test size	Top-1(%)	Real Top-1 (%)
Efficie	ntNet-B5 [34]	30M	9.9B	456	456	83.6	88.3
Efficie	ntNet-B7 [34]	66M	37.0B	600	600	84.3	_
Ž Fix-Ef	ficientNet-B8 [34, 38]	87M	89.5B	672	800	85.7	90.0
Z NFNet	-F3 [3]	255M	114.8B	320	416	85.7	89.4
NFNet	-F4 [3]	316M	215.3B	384	512	85.9	89.4
NFNet	-F5 [3]	377M	289.8B	416	544	86.0	89.2
ViT-B/	/16 [15]	86M	55.4B	224	384	77.9	83.6
ViT-L/	16 [15]	307M	190.7B	224	384	76.5	82.2
T2T-V	iT-14 [46]	22M	5.2B	224	224	81.5	_
T2T-V	iT-14†384 [46]	22M	17.1B	224	384	83.3	_
CrossV	/iT [6]	45M	56.6B	224	480	84.1	_
∞ Swin-l	3 [25]	88M	47.0B	224	384	84.2	_
a TNT-E	8 [16]	66M	14.1B	224	224	82.8	_
E DeepV	'iT-S [59]	27M	6.2B	224	224	82.3	_
2 DeepV	'iT-L [59]	55M	12.5B	224	224	83.1	_
DeiT-S	5 [36]	22M	4.6B	224	224	79.9	85.7
Distille	ed DeiT-S [36]	22M	4.6B	224	224	81.2	86.8
DeiT-H	3 [36]	86M	17.5B	224	224	81.8	86.7
DeiT-H	3†384 [36]	86M	55.4B	224	384	83.1	87.7
Distille	ed DeiT-B [36]	87M	17.5B	224	224	83.4	88.3
BoTN	et-S1-128 [31]	79.1M	19.3B	256	256	84.2	-
BoTN	et-S1-128 ³⁸⁴ [31]	79.1M	45.8B	256	384	84.7	-
CaiT-S	36†384 [37]	68M	48.0B	224	384	85.4	89.8
CaiT-M	436 [37]	271M	53.7B	224	224	85.1	89.3
CaiT-M	A36†448 [37]	271M	247.8B	224	448	86.3	90.2
LV-Vi	Г-S	26M	6.6B	224	224	83.3	88.1
E LV-Vi	Γ-S↑384	26M	22.2B	224	384	84.4	88.9
C LV-Vi	Г-М	56M	16.0B	224	224	84.1	88.4
🗅 LV-Vi	Г-М†384	56M	42.2B	224	384	85.4	89.5
S LV-Vi	Γ-L	150M	59.0B	288	288	85.3	89.3
Õ LV-Vi	Γ-L↑448	150M	157.2B	288	448	85.9	89.7
LV-Vi	Γ-L↑448	150M	157.2B	448	448	86.2	89.9
LV-Vi	Γ-L↑512	151M	214.8B	448	512	86.4	90.1

Comparison with SOTA on ImageNet

State-of-the-art Performance with less params and computation

Robustness to different models

1 December 2021

Visualization

Performance on downstream tasks (ADE20k Segmentation)

Table 5: Transfer performance of the proposed LV-ViT in semantic segmentation. We take two classic methods, FCN and UperNet, as segmentation architectures and show both single-scale (SS) and multi-scale (MS) results on the validation set.

Method	Token Labeling	Model Size	mIoU (SS)	P. Acc. (SS)	mIoU (MS)	P. Acc. (MS)
LV-ViT-S + FCN	×	30M	46.1	81.9	47.3	82.6
LV-ViT-S + FCN		30M	47.2	82.4	48.4	83.0
LV-ViT-S + UperNet	×	44M	46.5	82.1	47.6	82.7
LV-ViT-S + UperNet		44M	47.9	82.6	48.6	83.1

Performance on downstream tasks (ADE20k Segmentation)

Table 6: Comparison with previous work on ADE20K validation set. As far as we know, our LV-ViT-L + UperNet achieves the best result on ADE20K with only ImageNet-1K as training data in pretraining. [†]Pretrained on ImageNet-22K.

	Backbone	Segmentation Architecture	Model Size	mIoU (MS)	Pixel Acc. (MS)
	ResNet-269	PSPNet [54]	-	44.9	81.7
Z	ResNet-101	UperNet [44]	86M	44.9	-
S	ResNet-101	Strip Pooling [23]	-	45.6	82.1
•	ResNeSt200	DeepLabV3+ [9]	88M	48.4	-
s	DeiT-S	UperNet	52M	44.0	-
neı	ViT-Large [†]	SETR [56]	308M	50.3	83.5
IIO	Swin-T [26]	UperNet	60M	46.1	-
nsf	Swin-S [26]	UperNet	81M	49.3	-
Ira	Swin-B [26]	UperNet	121M	49.7	-
	Swin-B [†] [26]	UperNet	121M	51.6	-
ViT	LV-ViT-S	FCN	30M	48.4	83.0
	LV-ViT-S	UperNet	44M	48.6	83.1
2	LV-ViT-M	UperNet	77M	50.6	83.5
Т	LV-ViT-L	UperNet	209M	51.8	84.1

Conclusion

• Propose a novel token labeling objective for training better vision transformer models efficiently.

 Token labeling method is robust with respect to different model architecture, different model size and different machine annotator.

• Token labeling is also beneficial for downstream tasks like semantic segmentation.

1 December 2021

Thanks

1 December 2021