Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee

Flint Xiaofeng Fan^{1,2}, Yining Ma¹, Zhongxiang Dai¹, Wei Jing³, Cheston Tan², Bryan Kian Hsiang Low¹

¹National University of Singapore ²Institute for Infocomm Research, A*STAR ³Alibaba DAMO Academy

Agency for Science, Technology and Research

Outline

- Motivation & Background
- Problem Setup
- FedPG-BR
- Theoretical Results

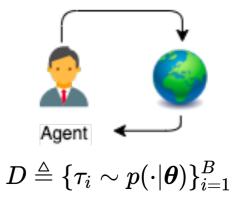
• Experiments

Reinforcement Learning (RL)

The optimization problem in RL.

Challenges of RL in real-world applications.

- Poor sample (environment interactions) efficiency.
- One agent owns limited number of samples
 - e.g., patients' medical records



slow, expensive, fragile

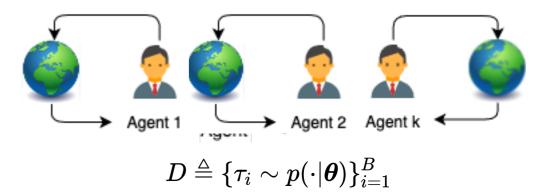
$$\pi_{\theta}^* = rg\max_{\theta} J(\theta) = \int_{\tau} P(\tau|\theta) R(\tau) = \mathbb{E}_{\tau \sim p(\cdot|\theta)}[R(\tau)]$$

Reinforcement Learning (RL)

The optimization problem in RL.

Challenges of RL in real-world applications.

- Poor sample (environment interactions) efficiency
- One agent owns limited number of samples
 - e.g., patients' medical records



slow, expensive, fragile

env interaction

$$\pi^*_ heta = rg\max_ heta J(heta) = \int_ au P(au| heta) R(au) = \mathbb{E}_{ au \sim p(\cdot| heta)}[R(au)]$$

Observation. Many other agents face the same challenges

Issue. Sharing raw samples is prohibited

Federated Reinforcement Learning (FRL)

Motivation. To build a *better* policy,

- with less trajectories
 - sample efficiency improved
- without sharing trajectories

Applications.

- clinical protocol discovery
- autonomous driving
- IoT devices
- , etc.

a group of self-interested agents

Challenges of FRL

No existing work to provide theoretical guarantee

- Critical drawback due to high sampling cost
- No assurance for practical applications

Vulnerable to random failures or adversarial attacks

- Inherited from Federated Learning
- Poses threats to real-world RL systems

a group of self-interested agents

Challenges of FRL

- No existing work to provide theoretical guarantee
 - Critical drawback due to high sampling cost
 - No assurance for practical applications
- Vulnerable to random failures or adversarial attacks
 - Inherited from Federated Learning
 - Poses threats to real-world RL systems

Simultaneously solved by this work

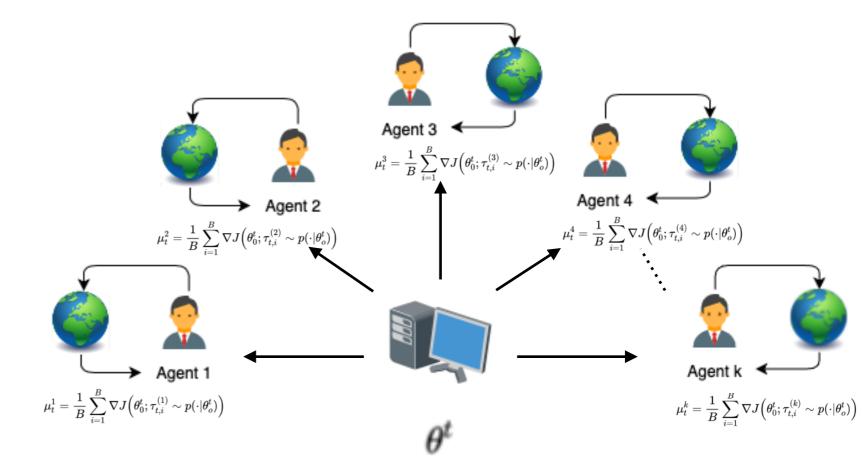
a group of self-interested agents

Outline

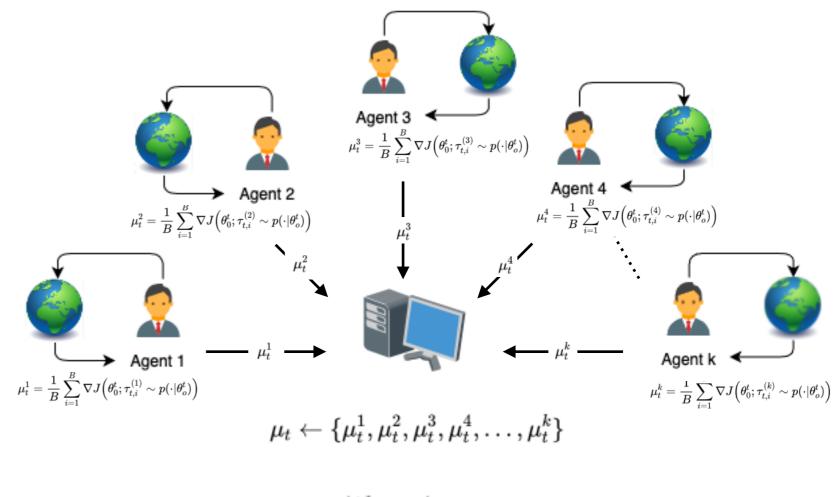
- Motivation & Background
- Problem Setup
- FedPG-BR
- Theoretical Results

• Experiments

Federated Policy Gradient

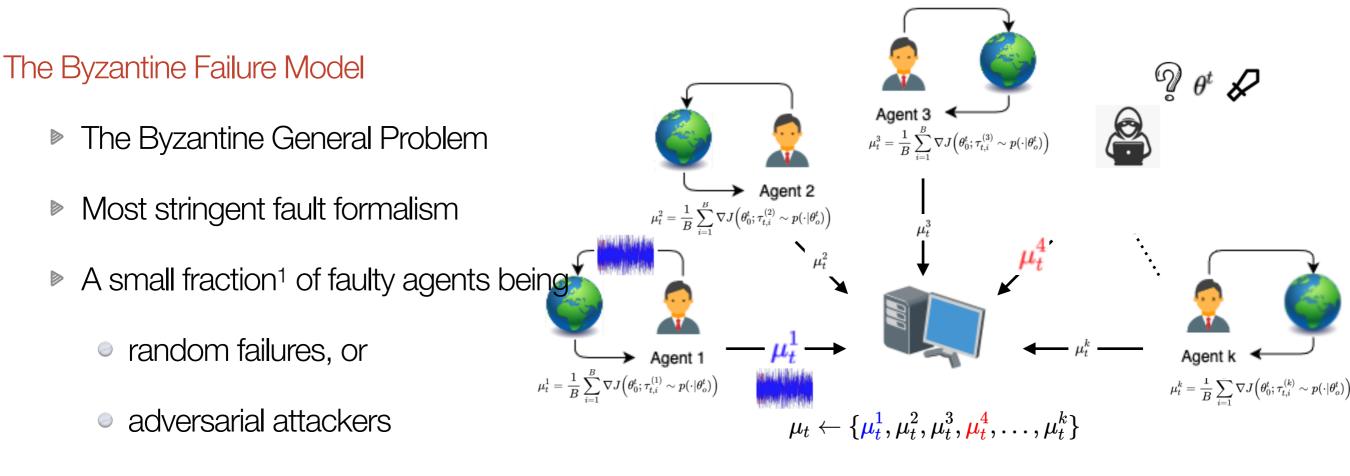


Federated Policy Gradient



 $heta^{t+1} \leftarrow heta^t + \eta_t \mu_t$

Practical FRL Systems



The system has no knowledge

 $heta^{t+1} \leftarrow heta^t + \eta_t \mu_t$

Aim. Build a federated RL policy in this setup with guaranteed improvement

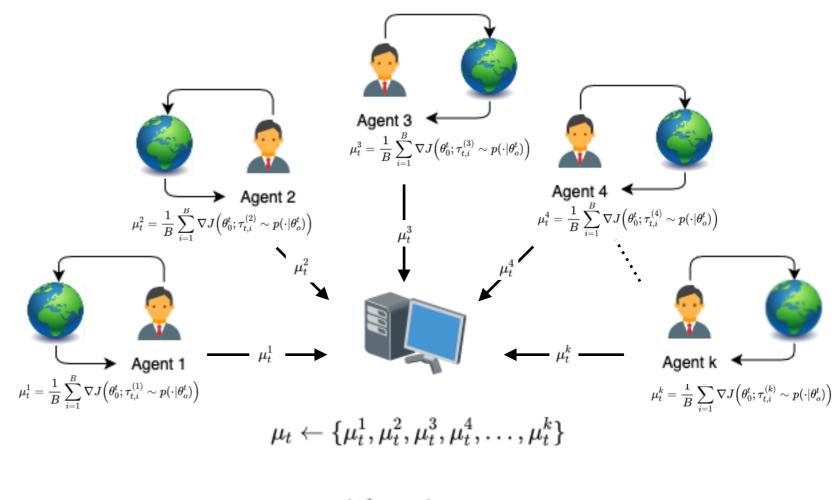
¹Typically less than half

Outline

- Motivation & Background
- Problem Setup
- FedPG-BR
- Theoretical Results

• Experiments

Federated Policy Gradient using SCSG Optimization



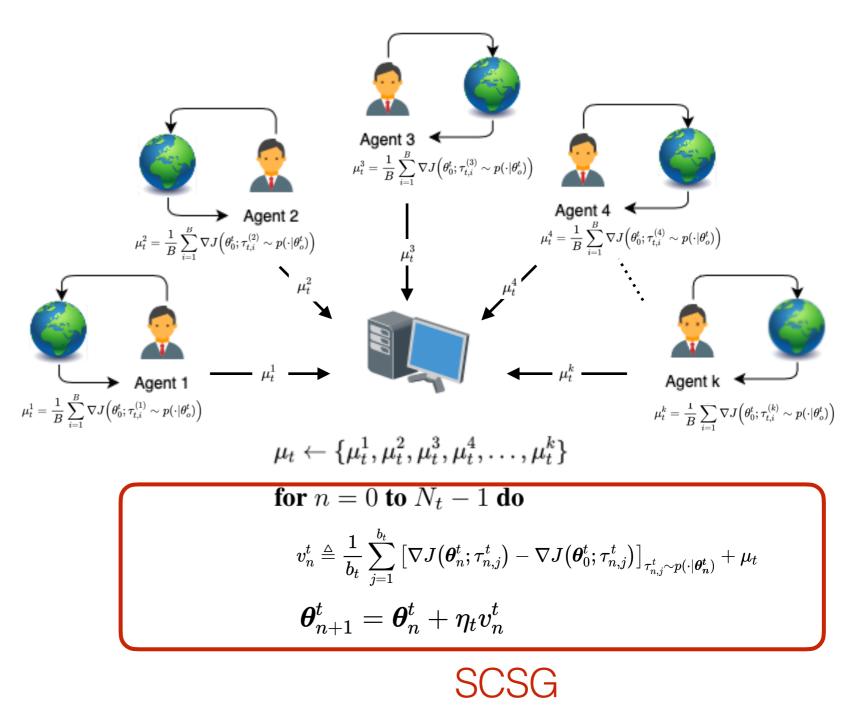
 $heta^{t+1} \leftarrow heta^t + \eta_t \mu_t$

Federated Policy Gradient using SCSG Optimization

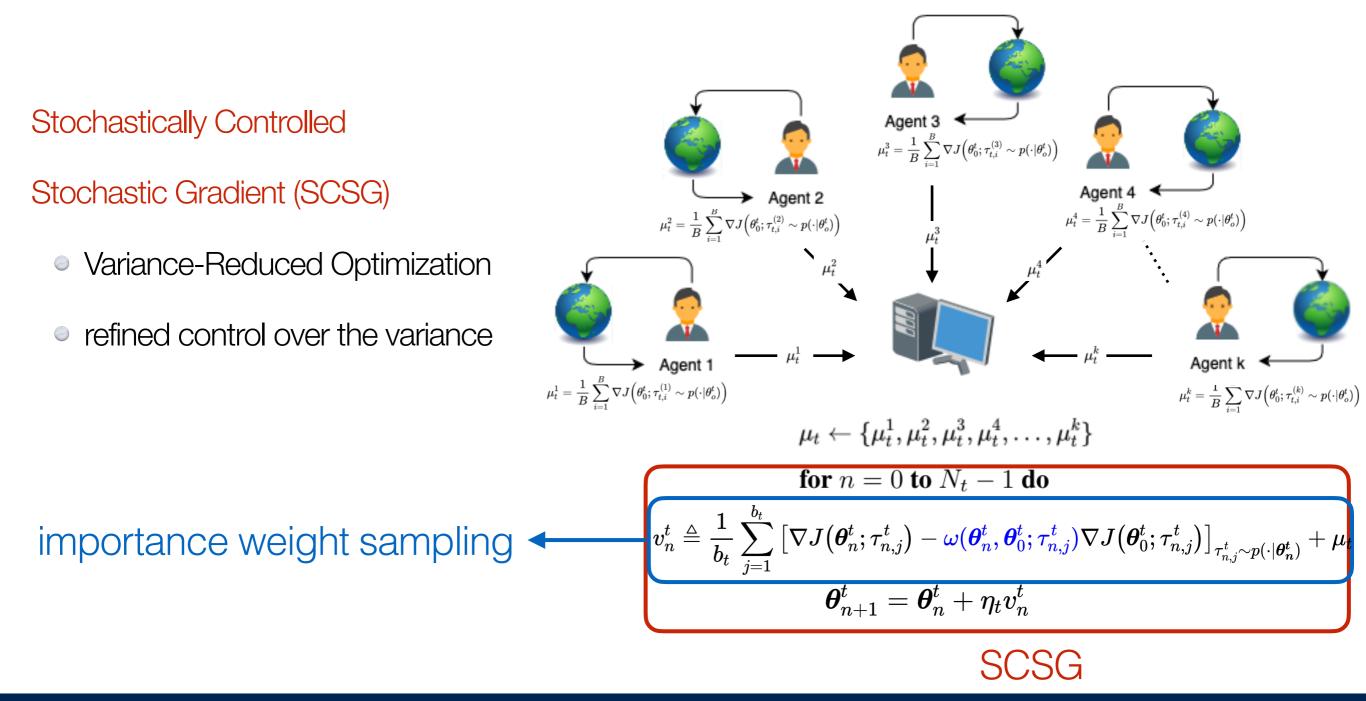
Stochastically Controlled

Stochastic Gradient (SCSG)

- Variance-Reduced Optimization
- refined control over the variance



Federated Policy Gradient using SCSG Optimization

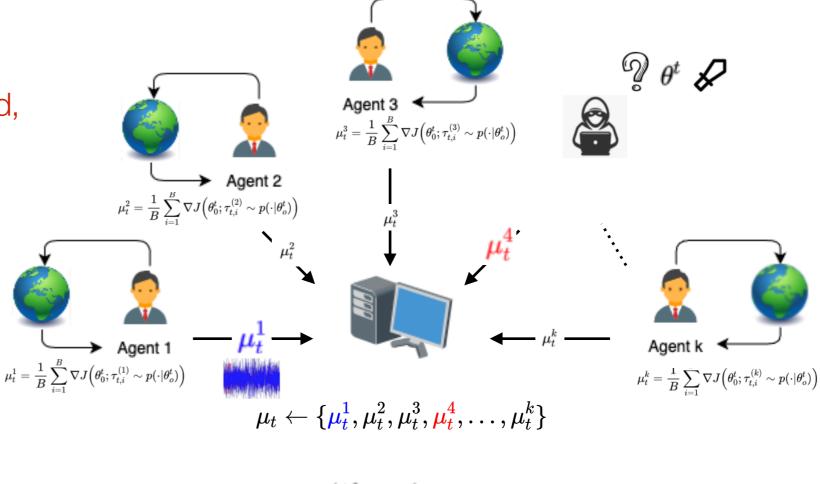


Flint Xiaofeng Fan National University of Singapore (NUS) & Agency for Science, Technology and Research (A*STAR)

Handling Byzantine Agents

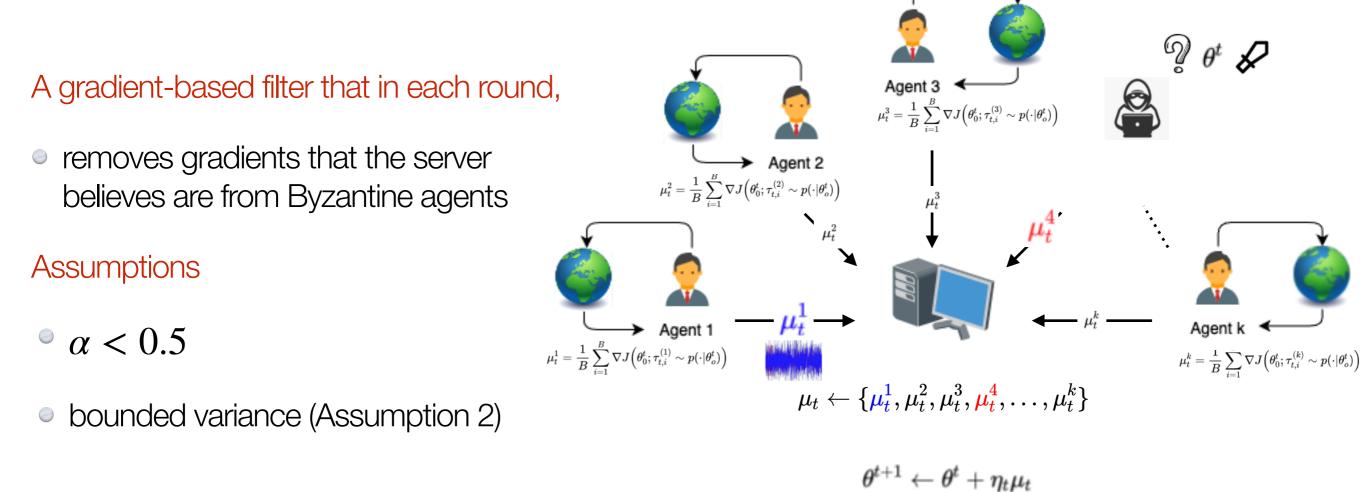
A gradient-based filter that in each round,

 removes gradients that the server believes are from Byzantine agents



 $heta^{t+1} \leftarrow heta^t + \eta_t \mu_t$

Handling Byzantine Agents



Assumption 2 (On bounded variance of the gradient estimator). There is a constant σ such that $||g(\tau|\theta) - \nabla J(\theta)|| \leq \sigma$ for any $\tau \sim p(\tau|\theta)$ for all policy π_{θ} .

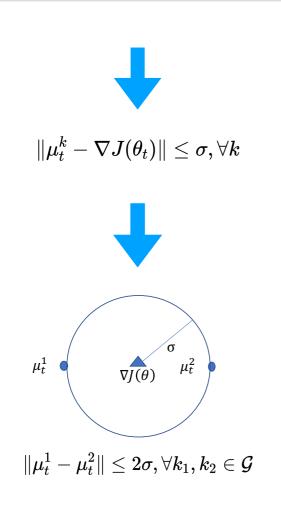
Assumption 2 (On variance of the gradient estimator)

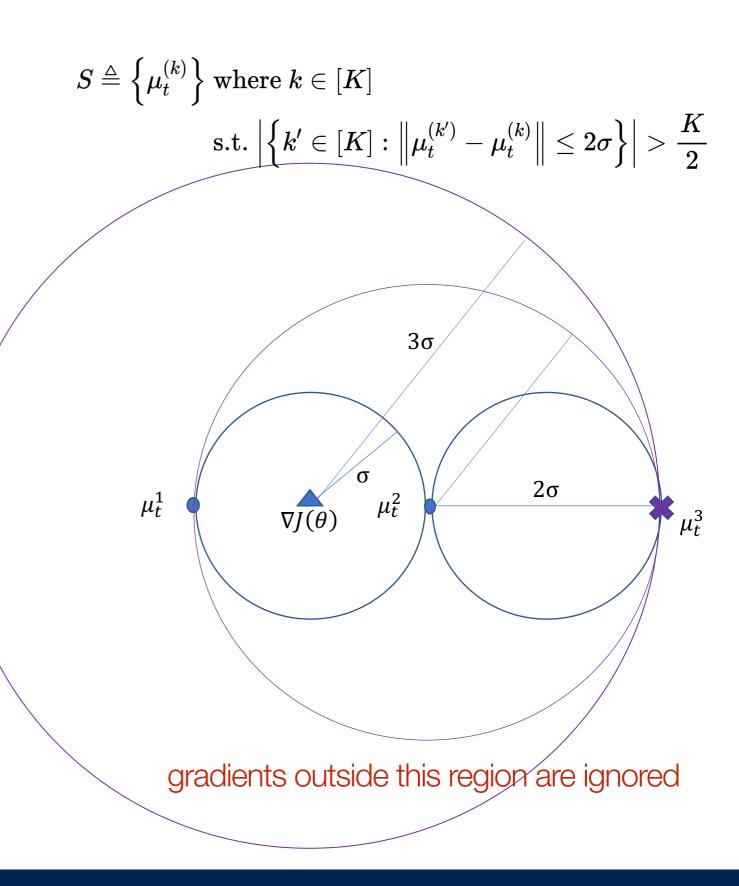
There is a constant σ such that $\|g(\tau|\theta) - \nabla J(\theta)\| \leq \sigma$ for any $\tau \sim p(\tau|\theta)$ for all policy π_{θ} .

$$egin{aligned} S & \triangleq \left\{ \mu_t^{(k)}
ight\} ext{ where } k \in [K] \ ext{ s.t. } \left| \left\{ k' \in [K] : \left\| \mu_t^{(k')} - \mu_t^{(k)}
ight\| \leq 2\sigma
ight\}
ight| > rac{K}{2} \end{aligned}$$

Assumption 2 (On variance of the gradient estimator)

There is a constant σ such that $\|g(\tau|\theta) - \nabla J(\theta)\| \leq \sigma$ for any $\tau \sim p(\tau|\theta)$ for all policy π_{θ} .





For details and proofs, please refer to our supplementary materials

Flint Xiaofeng Fan

National University of Singapore (NUS) & Agency for Science, Technology and Research (A*STAR)

Outline

- Motivation & Background
- Problem Setup
- FedPG-BR
- Theoretical Results

• Experiments

Convergence Guarantee

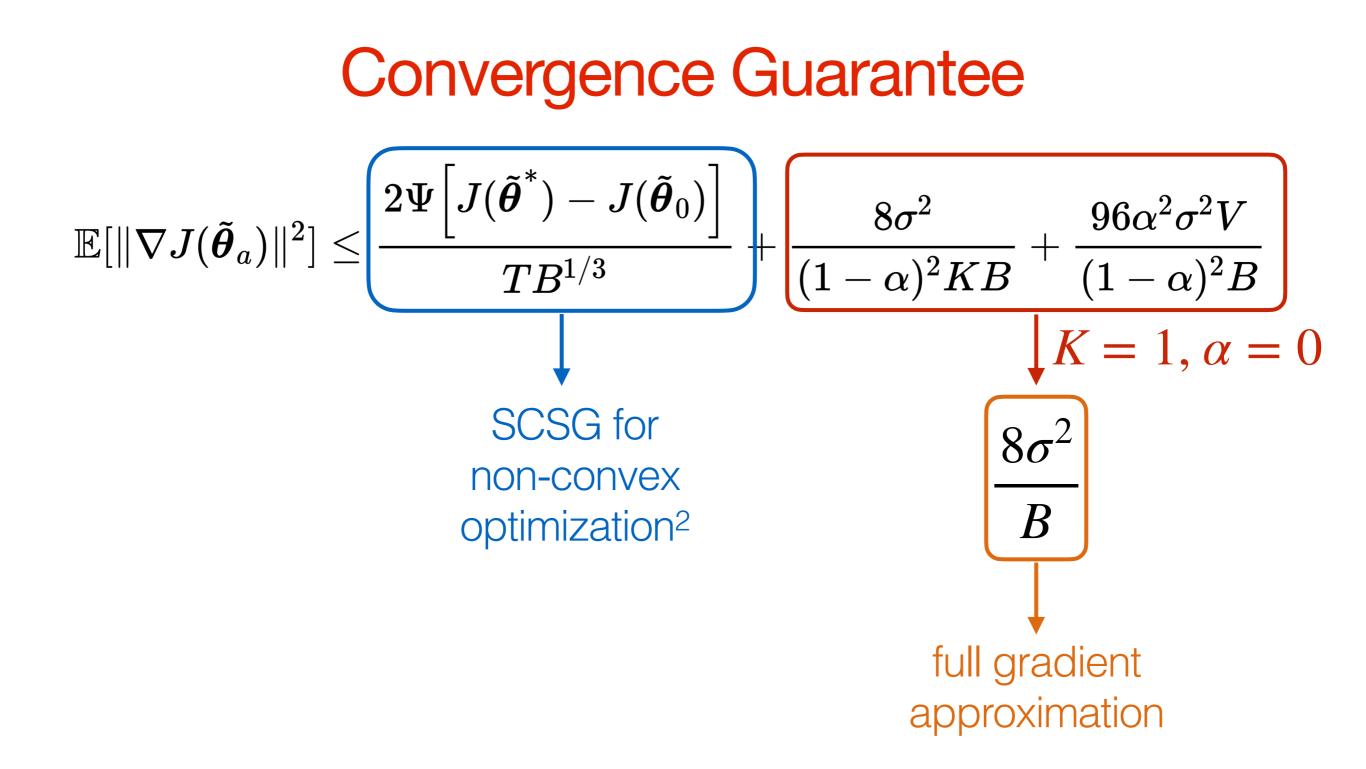
$$\mathbb{E}[\|\nabla J(\tilde{\boldsymbol{\theta}}_a)\|^2] \leq \frac{2\Psi\Big[J(\tilde{\boldsymbol{\theta}}^*) - J(\tilde{\boldsymbol{\theta}}_0)\Big]}{TB^{1/3}} + \frac{8\sigma^2}{(1-\alpha)^2 KB} + \frac{96\alpha^2 \sigma^2 V}{(1-\alpha)^2 B}$$

Convergence Guarantee

$$\mathbb{E}[\|\nabla J(\tilde{\boldsymbol{\theta}}_{a})\|^{2}] \leq \frac{2\Psi\left[J(\tilde{\boldsymbol{\theta}}^{*}) - J(\tilde{\boldsymbol{\theta}}_{0})\right]}{TB^{1/3}} + \underbrace{\frac{8\sigma^{2}}{(1-\alpha)^{2}KB} + \frac{96\alpha^{2}\sigma^{2}V}{(1-\alpha)^{2}B}}_{K = 1, \alpha = 0}$$

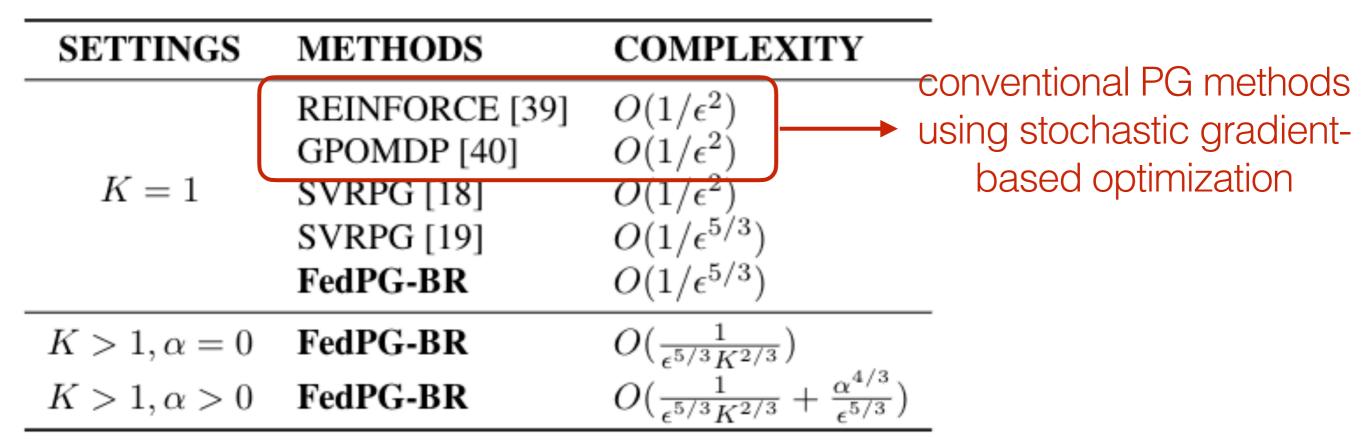
$$K = 1, \alpha = 0$$

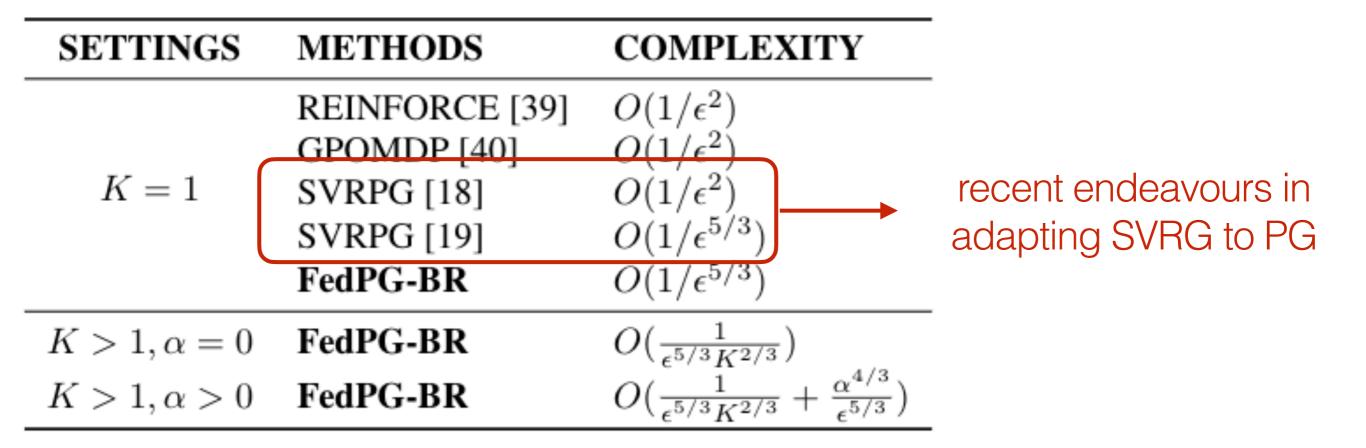
$$\underbrace{\frac{8\sigma^{2}}{B}}_{full \text{ gradient}}_{approximation}$$

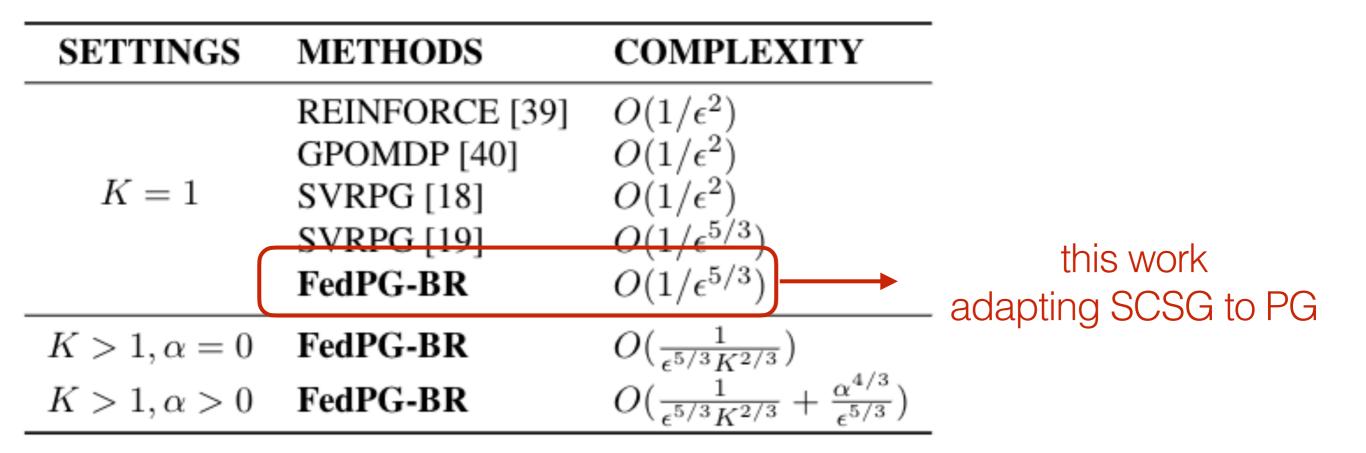


²Lei, Lihua, Cheng Ju, Jianbo Chen, and Michael I. Jordan. NeurIPS2017

SETTINGS	METHODS	COMPLEXITY	
	REINFORCE [39]	$O(1/\epsilon^2)$	
	GPOMDP [40]	$O(1/\epsilon^2)$	
K = 1	SVRPG [18]	$O(1/\epsilon^2)$	
	SVRPG [19]	$O(1/\epsilon^{5/3})$	
	FedPG-BR	$O(1/\epsilon^{5/3})$	
$K>1, \alpha=0$	FedPG-BR	$O(\frac{1}{\epsilon^{5/3}K^{2/3}})$	
$K>1, \alpha>0$	FedPG-BR	$O(\frac{1}{\epsilon^{5/3}K^{2/3}} + \frac{\alpha^{4/3}}{\epsilon^{5/3}})$	







SETTINGS	METHODS	COMPLEXITY	
K = 1	REINFORCE [39] GPOMDP [40] SVRPG [18] SVRPG [19] FedPG-BR	$ \begin{array}{l} O(1/\epsilon^2) \\ O(1/\epsilon^2) \\ O(1/\epsilon^2) \\ O(1/\epsilon^{5/3}) \\ O(1/\epsilon^{5/3}) \end{array} $	
$K > 1, \alpha = 0$	FedPG-BR	$O(\frac{1}{\epsilon^{5/3}K^{2/3}})$	guaranteed to improve
$K>1, \alpha>0$	FedPG-BR	$O(\frac{1}{\epsilon^{5/3}K^{2/3}} + \frac{\alpha^{4/3}}{\epsilon^{5/3}})$	as K increases

SETTINGS	METHODS	COMPLEXITY	
K = 1	REINFORCE [39] GPOMDP [40] SVRPG [18] SVRPG [19] FedPG-BR	$O(1/\epsilon^2)$ $O(1/\epsilon^2)$ $O(1/\epsilon^2)$ $O(1/\epsilon^{5/3})$ $O(1/\epsilon^{5/3})$	
$K>1, \alpha=0$	FedPG-BR	$O(\frac{1}{\epsilon^{5/3}K^{2/3}})$	guaranteed to improve
$K>1, \alpha>0$	FedPG-BR	$O(\frac{1}{\epsilon^{5/3}K^{2/3}} + \frac{\alpha^{4/3}}{\epsilon^{5/3}})$	in the potential presence
			of Byzantine agents
	additive to the convergence		

- Motivation & Background
- Problem Setup
- FedPG-BR
- Theoretical Results

• Experiments

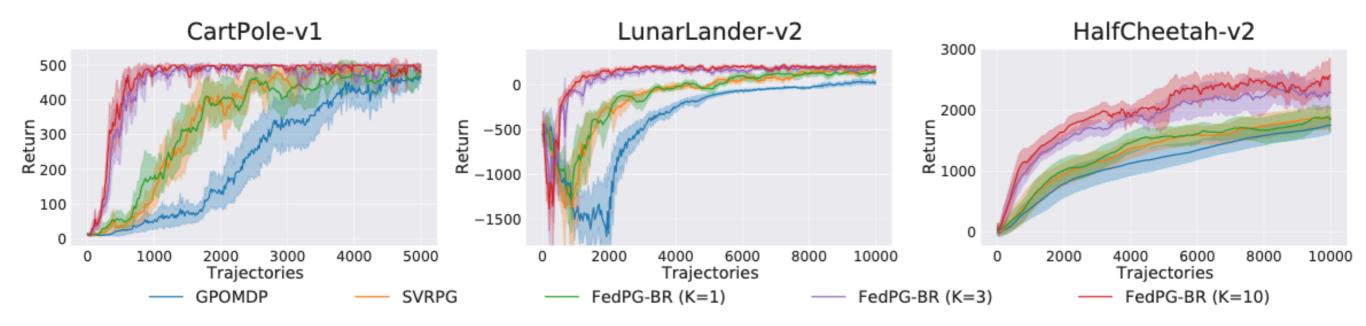
Performance in Ideal Systems with $\alpha = 0$

FedPG-BR and SVRPG performs comparably when K = 1 (single-agent)

both outperforming GPOMDP

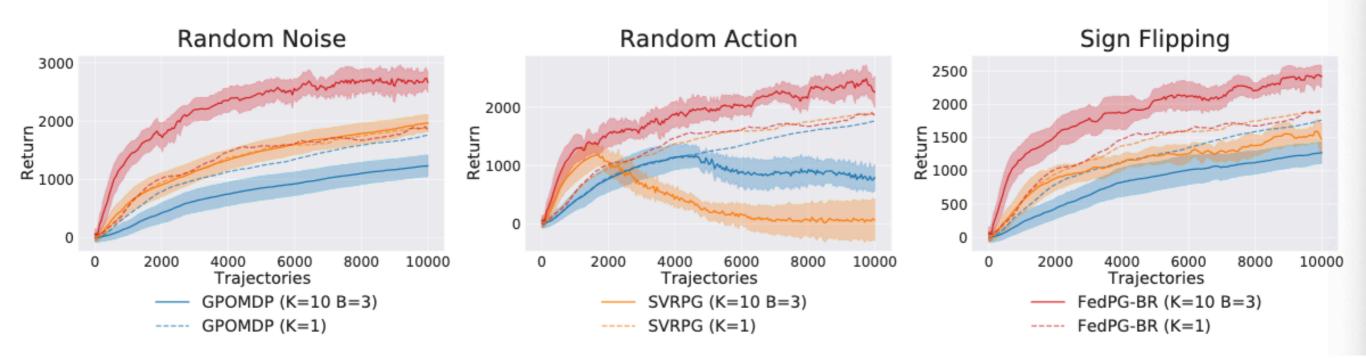
The performance of FedPG-BR...

- ... is improved significantly with the federation of only K = 3 agents
- ... is improved even further with K = 10 agents

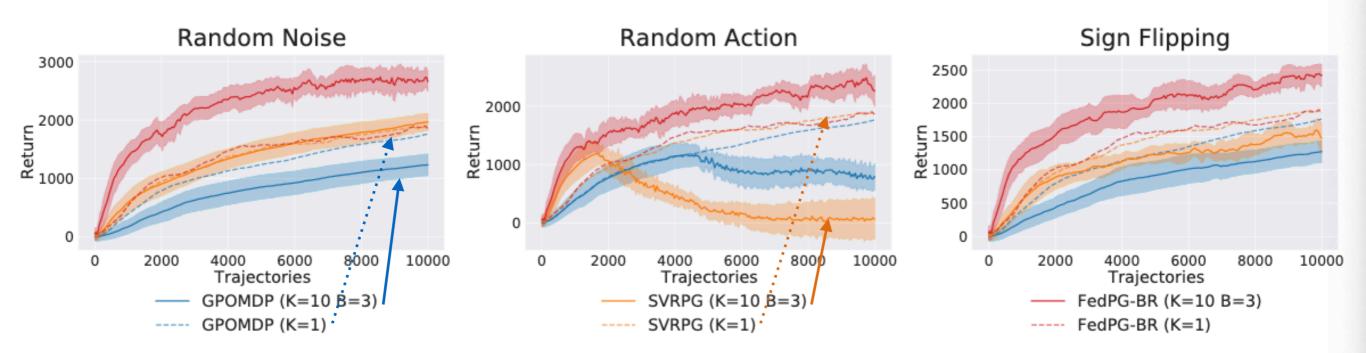


K = 10 agents among which 3 are Byzantine agents being either

- Random Noise. Each Byzantine agent sends a random vector to the server
- Random Action. Every Byzantine agent ignores the policy from the server and takes actions randomly
- Sign Flipping. Each Byzantine agent computes the correct gradient but sends the scaled negative gradient

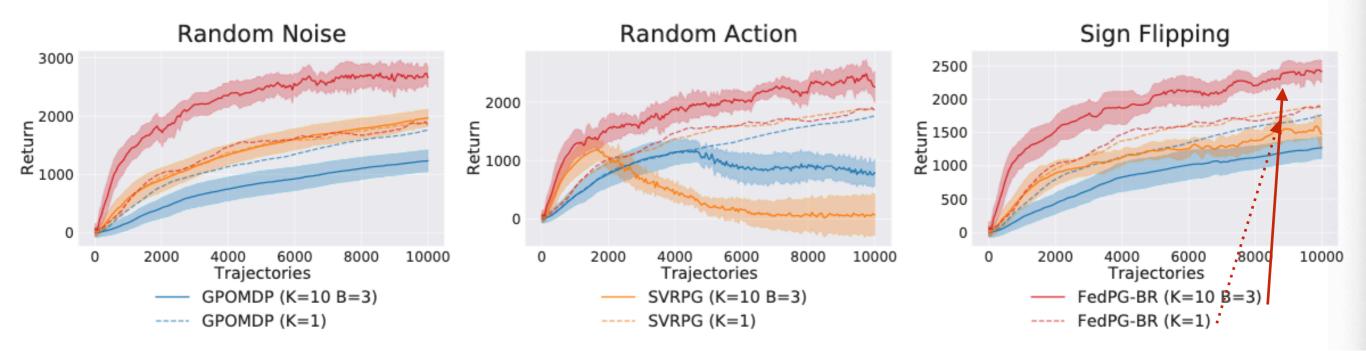


With the presence of Byzantine agents, the performance of federation of...
► ... GPOMDP and SVRPG are worse than that in the single-agent setup



With the presence of Byzantine agents, the performance of federation of...

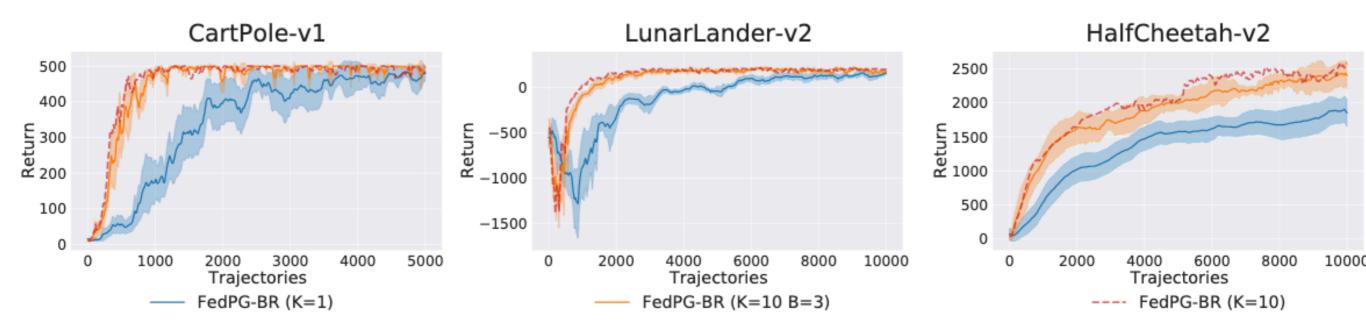
- GPOMDP and SVRPG are worse than that in the single-agent setup
- FedPG-BR(K=10 B=3) is robust against all 3 types of Byzantine agents
 - significantly outperforms its single-agent setup



Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee

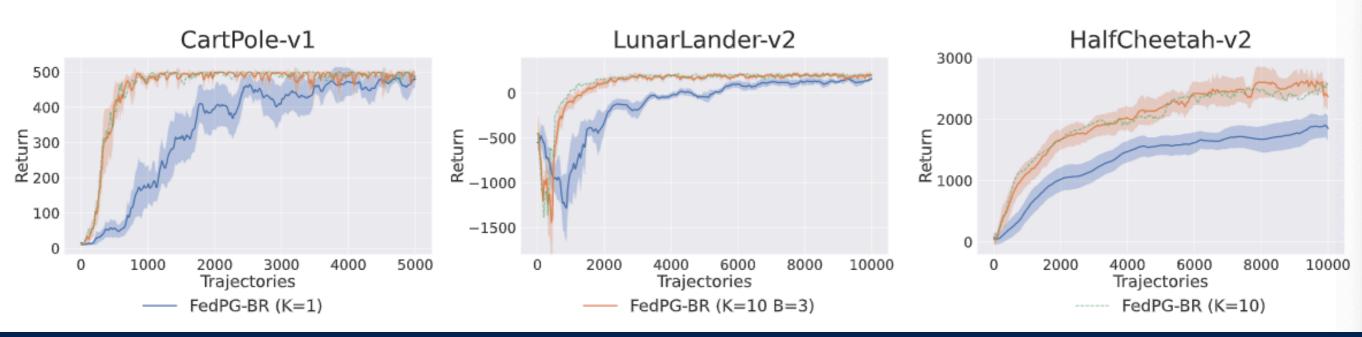
Thank you!

Performance of FedPG-BR against more sophisticated attacks



Flint Xiaofeng Fan National University of Singapore (NUS) & Agency for Science, Technology and Research (A*STAR)

Performance of FedPG-BR against more sophisticated attacks



Flint Xiaofeng Fan

National University of Singapore (NUS) & Agency for Science, Technology and Research (A*STAR)