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Improving Tail Performance for Fairness

A normally trained model usually 
has very high loss on a fraction of 
the data.

Low Tail Performance



Improving Tail Performance for Fairness

The tail usually corresponds to 
certain minority groups.



Improving Tail Performance for Fairness



CVaR Loss

𝛼-CVaR Loss: Average loss over 
the worst 𝛼 fraction of the data.

Can we minimize the 𝛼-CVaR
loss to train a fair model?



Overview

• For classification tasks, if we use deterministic models, then CVaR
is almost equivalent to ERM.

• We propose to circumvent this problem by using ensemble 
models, and specifically we train ensemble models with Boosting.

• We find that for ensemble models, CVaR is equivalent to LPBoost, 
a variant of Boosting. So we design a framework based on this.
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Classification: Zero-one Loss

Proposition: Let 𝐿!/#(𝑓) be the 
average zero-one loss, and 
CVaR$

!/# 𝑓 be the 𝛼-CVaR zero-
one loss, then

CVaR$
!/# 𝑓 = min{1, 𝐿!/#(𝑓)/𝛼}



Classification: Zero-one Loss

CVaR$
!/# 𝑓 = min{1, 𝐿!/#(𝑓)/𝛼}

CVaR loss is non-decreasing with 
average loss.

Minimizing the CVaR loss is 
equivalent to minimizing the 
average loss (ERM).



Randomized Model

The zero-one loss of a 
randomized model is a real value 
in [0,1] instead of binary.

Thus, it breaks the previous 
connection between the CVaR
loss and the average loss.

𝑓(𝑥) is a distribution 
over 𝒴 instead of a 
single value 𝑦
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The General Boosting Framework

• Training set: 𝑥!, 𝑦! , … , 𝑥", 𝑦"

• Weak Learner ℒ (e.g. ERM)

• For each round 𝑡:

1. Pick a sample weight vector 𝑤% = 𝑤#% , … , 𝑤&% ∈ Δ&
2. Feed the sample weights and the training set to ℒ and get a base 

classifier 𝑓%

• After 𝑇 rounds, pick a model weight vector 𝜆 = 𝜆!, … , 𝜆# ∈ Δ#
and output the ensemble model 𝐹 = 𝑓!, … , 𝑓#, 𝜆

Δ& is the unit 
simplex in ℝ&



Inference with the Ensemble Model

• Given an ensemble model 𝐹 = 𝑓#, … , 𝑓' , 𝜆 and an input 𝑥:

1. Randomly sample an 𝑓! according to the distribution 𝜆
2. Return #𝑦 = 𝑓! 𝑥

• Expected loss of 𝐹 on sample 𝑥, 𝑦 :

ℓ 𝐹 𝑥 , 𝑦 =B
%(#

'

𝜆%ℓ 𝑓% 𝑥 , 𝑦

Loss function 
ℓ C𝑦, 𝑦



We have a weak learner ℒ that 
outputs models with accuracy at 
least 50% + 𝛿 for some 𝛿 > 0

Weak Learner → Strong Learner

Extend Boosting to Train Fair Models

Boosting for Accuracy (Original) Boosting for Fairness

We have an unfair learner ℒ that 
outputs models with high average 
accuracy but low tail performance

The learner is strong but unfair

Unfair Learner → Fair Learner
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𝜌∗% = max
&,(

𝜌 − !
)"
∑*+!" 𝜓*

s.t.   𝜆 ∈ Δ%

𝜓* ≥ 0,𝜓* ≥ 𝜌 − 1 + ∑,+!% 𝜆,ℓ*,

𝛼-LPBoost[1]

Primal Dual

𝛾∗% = min
-,.

𝛾

s.t. ∑*+!" 𝑤*ℓ*, ≥ 1 − 𝛾 , ∀𝑠 ∈ [𝑡]
𝑤 ∈ Δ", 𝑤* ≤

!
)"

Let ℓ)% = ℓ 𝑓% 𝑥) , 𝑦) . At round 𝑡 + 1, solve the following linear program to pick the 
sample weight vector 𝑤 = 𝑤#… ,𝑤& :

[1] Demiriz et al. Linear Programming Boosting via Column 
generation. Machine Learning, 46(1):225-254, 2002.



𝜌∗% = max
&,(

𝜌 − !
)"
∑*+!" 𝜓*

s.t.   𝜆 ∈ Δ%

𝜓* ≥ 0,𝜓* ≥ 𝜌 − 1 + ∑,+!% 𝜆,ℓ*,

𝛼-LPBoost

Primal Dual

𝛾∗% = min
-,.

𝛾

s.t. ∑*+!" 𝑤*ℓ*, ≥ 1 − 𝛾 , ∀𝑠 ∈ [𝑡]
𝑤 ∈ Δ", 𝑤* ≤

!
)"

Let ℓ)% = ℓ 𝑓% 𝑥) , 𝑦) . At round 𝑡 + 1, solve the following linear program to pick the 
sample weight vector 𝑤 = 𝑤#… ,𝑤& :

Sample 
weights

Weighted 
loss of 𝑓!
w.r.t. 𝑤

Find 𝑤 such that 
the weighted loss 
of every previous 
model is large

Model weight 
vector

Strong duality: 
𝜌∗# = 𝛾∗#



𝛼-LPBoost is Equivalent to 𝛼-CVaR

• The primal is computing the 𝜆 that minimizes the 
𝛼-CVaR zero-one loss of the ensemble model that 
consists of 𝑓!, … , 𝑓%!

• Theorem: For any 𝑓!, … , 𝑓%, we have

𝜌∗% = 𝛾∗% = 1 − min
&∈5!

𝐶𝑉𝑎𝑅)
6/! (𝐹)

where 𝐹 = (𝑓!, … , 𝑓%, 𝜆) is the ensemble model.

We can minimize the 
𝛼-CVaR zero-one loss  
by maximizing 𝛾∗#!



𝛾∗% = min
-,.

𝛾

s.t. 𝛾 ≥ 1 − ∑*+!" 𝑤*ℓ*, , ∀𝑠 ∈ [𝑡]
𝑤 ∈ Δ", 𝑤* ≤

!
)"

Using LPBoost to minimize CVaR Loss

Goal: Maximize 𝜸∗𝒕 How to increase 𝜸?

By training a new model 𝑓%9!
such that its accuracy w.r.t.
sample weight 𝑤 is high.

Repeat this process until there is 
no 𝑤 such that 𝛾 is small.

𝛾 is the maximum 
accuracy of 𝑓$, … , 𝑓#
w.r.t. sample weight 𝑤



Using LPBoost to minimize CVaR Loss

• Initially, 𝑤! = !
" , … ,

!
"

• For each round 𝑡:

• Feed the 𝑤% to the unfair learner ℒ to get 𝑓%

• Solve the dual problem of 𝛼-LPBoost to get 𝑤%,#

• Stop if 𝛾∗%,# > 𝛾! for some stopping criteria 𝛾! ∈ 0,1

• Solve the primal problem of 𝛼-LPBoost to get 𝜆

Solve the optimization 
problems with tools 
such as MOSEK.
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Assumption on the Unfair Learner

• We have access to an unfair learner ℒ such that:

• Given any sample weight vector 𝑤 = 𝑤#, … , 𝑤& , 
the learner can output a model 𝑓 such that its 
average loss w.r.t. 𝑤 is at most 𝑔, i.e.

B
)(#

&

𝑤)ℓ 𝑓 𝑥) , 𝑦) ≤ 𝑔

• 𝑔 ∈ 0,1 is called the guarantee of the learner



The Framework

• For each round 𝑡:

1. Pick a sample weight vector 𝑤! = 𝑤"!, … , 𝑤#! ∈ Δ#
2. Feed the sample weights and the training set to the unfair 

learner ℒ and get a base classifier 𝑓! whose weighted average 
zero-one loss w.r.t. 𝑤! is at most 𝑔

• After 𝑇 rounds, pick a model weight vector 𝜆 = 𝜆#, … , 𝜆' ∈
Δ' and output the ensemble model 𝐹 = 𝑓#, … , 𝑓' , 𝜆



Convergence Rate of Regularized LPBoost[2]

• If every sample weight vector 𝑤!$" is picked by solving 
the regularized 𝛼-LPBoost dual problem:

min
%

𝛾 − "
&
𝐻(𝑤)

s.t. ∑'("# 𝑤'ℓ') ≥ 1 − 𝛾 , ∀𝑠 ∈ 𝑡 ; 𝑤 ∈ Δ#, 𝑤' ≤
"
*#

where 𝐻 𝑤 = −∑'("# 𝑤' log𝑤' is the entropy function 
and 𝛽 = max +

,
log "

*
, "
+

, then 𝐶𝑉𝑎𝑅*
-/" 𝐹 ≤ 𝑔 + 𝛿 if

𝑇 = max
32
𝛿+
log

1
𝛼
,
8
𝛿
= 𝑂

1
𝛿+
log

1
𝛼

There exists a 
counterexample where 
unregularized LPBoost
takes 𝑇 = Ω $

%
to 

converge
[2] Warmuth et al. Entropy Regularized LPBoost. In International Conference 
on Algorithmic Learning Theory, pages 256-271, Springer, 2008.



𝛼-AdaLPBoost

• Pick the sample weight vector 𝑤% with AdaBoost and 
the final model weight vector 𝜆 by solving the 𝛼-
LPBoost primal problem.

• AdaBoost: 𝑤*%9! ∝ exp 𝜂 ∑,+!% ℓ*,

• Advantages:

• Easier to compute 𝑤%: No need to solve a linear program
• Easier to adjust 𝛼: Only 𝜆 depends on 𝛼



Convergence Rate of 𝛼-AdaLPBoost

• For 𝛼-AdaLPBoost, if we set 𝜂 = = >?@ "
# ,then 

𝐶𝑉𝑎𝑅)
6/! 𝐹 ≤ 𝑔 + 𝛿 with 𝑇 = 𝑂 >?@ "

A"

• Regularization is not required



Experiments

• Conducted on 4 datasets

• Run 𝛼-AdaLPBoost with 
different 𝛼 and compare with 
ERM and regularized LPBoost

Results on CIFAR-10



Experiments

• When 𝛼 is small, 𝛼-AdaLPBoost
achieves lower 𝛼-CVaR zero-one 
loss than ERM

• The performance of 𝛼-AdaLPBoost
is close to regularized LPBoost

Results on CIFAR-10



Thanks.


