Last iterate convergence of SGD for Least-Squares in the Interpolation regime

Aditya Varre*, Loucas Pillaud-Vivien*, Nicolas Flammarion*

NeurIPS, October 19, 2021.

1

Problem Setting

• Least-Square: A stream of i.i.d samples $(x_i, y_i)_{i=1}^T$ from an unknown distribution ρ . We want to minimize the population risk:

$$\mathcal{R}(heta) = rac{1}{2} \mathbb{E}_{
ho} \left(\langle heta, x
angle_{\mathcal{H}} - y
ight)^2,$$

where $\theta, x \in \mathcal{H}$, (possibly infinite dimensional) Hilbert space and $y \in \mathbb{R}$.

Problem Setting

• Least-Square: A stream of i.i.d samples $(x_i, y_i)_{i=1}^T$ from an unknown distribution ρ . We want to minimize the population risk:

$$\mathcal{R}(heta) = rac{1}{2} \mathbb{E}_{
ho} \left(\langle heta, x
angle_{\mathcal{H}} - y
ight)^2,$$

where $\theta, x \in \mathcal{H}$, (possibly infinite dimensional) Hilbert space and $y \in \mathbb{R}$.

• We study the SGD algorithm:

$$heta_{t+1} = heta_t - \gamma \left(\langle heta_t, x_t
angle_{\mathcal{H}} - y_t
ight) x_t$$

Problem Setting

• Least-Square: A stream of i.i.d samples $(x_i, y_i)_{i=1}^T$ from an unknown distribution ρ . We want to minimize the population risk:

$$\mathcal{R}(heta) = rac{1}{2} \mathbb{E}_{
ho} \left(\langle heta, x
angle_{\mathcal{H}} - y
ight)^2,$$

where $\theta, x \in \mathcal{H}$, (possibly infinite dimensional) Hilbert space and $y \in \mathbb{R}$.

• We study the SGD algorithm:

$$heta_{t+1} = heta_t - \gamma \left(\langle heta_t, x_t
angle_{\mathcal{H}} - y_t
ight) x_t$$

• Aim: bound the excess risk. Denote $\theta_* := \operatorname{argmin}_{\theta \in \mathcal{H}} \mathcal{R}(\theta)$, we bound the excess risk of the estimator given by the *T*-th iterate:

$$\mathbb{E}\mathcal{R}(\theta_{T}) - \mathcal{R}(\theta_{*})$$

Last Iterate of SGD

Last iterate of the constant step-size SGD may not converge, Why ?
 Noise = Additive (model noise) + Multiplicative (SGD sampling noise)
 Additive noise forces to use variance reduction techniques for SGD to converge.

Last Iterate of SGD

- Last iterate of the constant step-size SGD may not converge, Why ?
 Noise = Additive (model noise) + Multiplicative (SGD sampling noise)
 Additive noise forces to use variance reduction techniques for SGD to converge.
- The noiseless setting: We make the hypothesis that the model is perfect, i.e., there is no additive noise, i.e there exists a perfect regressor θ_*

$$\langle \theta_*, x \rangle = y \quad a.s.$$

Last iterate of SGD should converge in this model !

Noiseless Least Squares

• Merits of the noiseless setting. Captures the modern machine learning architecture: overparameterization and interpolation (w.r.t. training loss)

Noiseless Least Squares

- Merits of the noiseless setting. Captures the modern machine learning architecture: overparameterization and interpolation (w.r.t. training loss)
- Non-strongly convex. For, strongly convex we have linear rates on last iterate. However, for non-strongly convex it was **open**.

Noiseless Least Squares

- Merits of the noiseless setting. Captures the modern machine learning architecture: **overparameterization** and **interpolation** (w.r.t. training loss)
- Non-strongly convex. For, strongly convex we have linear rates on last iterate. However, for non-strongly convex it was **open**.
- Covariance The covariance operator on \mathcal{H} :

$$\mathsf{H} := \mathbb{E}_{\rho}[x \otimes x].$$

The non-strongly convex setting corresponds to the **smallest eigen value** being **arbitrarily small** and close to 0.

Main Result

Recall, **Risk** : $\mathcal{R}(\theta) = \frac{1}{2}\mathbb{E}_{\rho}\left(\langle \theta, x \rangle - Y\right)^2$, **SGD**: $\theta_{t+1} = \theta_t - \gamma\left(\langle \theta_t, x_t \rangle - y_t\right)x_t$.

Main Result

Recall, **Risk** : $\mathcal{R}(\theta) = \frac{1}{2} \mathbb{E}_{\rho} \left(\langle \theta, x \rangle - Y \right)^2$, **SGD**: $\theta_{t+1} = \theta_t - \gamma \left(\langle \theta_t, x_t \rangle - y_t \right) x_t$. $\exists \mathbf{R} \ s.t. \ \mathbb{E} \left[\|x\|^2 \ xx^\top \right] \preccurlyeq \mathbf{RH} \quad and \quad \|\theta_*\|_{\mathcal{H}} < +\infty$ (1)

Main Result

Recall, Risk : $\mathcal{R}(\theta) = \frac{1}{2} \mathbb{E}_{\rho} \left(\langle \theta, x \rangle - Y \right)^2$, SGD: $\theta_{t+1} = \theta_t - \gamma \left(\langle \theta_t, x_t \rangle - y_t \right) x_t$. $\exists \mathbb{R} \ s.t. \ \mathbb{E} \left[\|x\|^2 \ xx^\top \right] \preccurlyeq \mathbb{R} \mathbf{H} \quad and \quad \|\theta_*\|_{\mathcal{H}} < +\infty$ (1)

Main Result

For $T \ge 2$, if we set $\gamma = (4R \ln(T))^{-1}$, we have the following bound for the expected risk of the estimator given by the T^{th} iterate of SGD:

$$\mathbb{E}\mathcal{R}(\theta_T) \leq 3 \ R \ \|\theta_*\|_{\mathcal{H}}^2 \ \frac{\ln(T)}{T}.$$
 (2)

Non-parametric Rates

With further refinements over the spectrum of co-variance i.e. capacity condition

$$\exists \alpha > 0, R_{\alpha} > 0 \ s.t. \ \mathbb{E}\left[\langle x, \mathbf{H}^{-\alpha} x \rangle x x^{\top} \right] \preccurlyeq R_{\alpha} \mathbf{H}$$
(3)

Non-parametric Rates

With further refinements over the spectrum of co-variance i.e. capacity condition

$$\exists \alpha > 0, R_{\alpha} > 0 \ s.t. \ \mathbb{E}\left[\langle x, \mathbf{H}^{-\alpha} x \rangle x x^{\top} \right] \preccurlyeq R_{\alpha} \mathbf{H}$$
(3)

and regularity of optimum i.e. source condition like

$$\exists \beta > -1, C_{\beta} > 0 \ s.t. \ C_{\beta} = \|\mathbf{H}^{-\beta/2}\theta_*\|_{\mathcal{H}}^2$$
(4)

Non-parametric rates For $T \ge 3$, where $\gamma^{1-\alpha} \le (32\xi_{\alpha}R_{\alpha})^{-1}$ and $\xi_{\alpha} = \sum_{n\ge 1} \frac{1}{n^{1+\alpha}}$, we have $\mathbb{E}\mathcal{R}(\theta_{T}) \le 2\left(\frac{1+\beta}{\gamma}\right)^{1+\beta} \frac{C_{\beta}}{T^{1+\alpha\wedge\beta}}$ (5)

Contributions:

• No additive noise implies no variance reduction. Last iterate of the constant step-size SGD converges!

Perspectives:

Contributions:

- No additive noise implies no variance reduction. Last iterate of the constant step-size SGD converges!
- A new Lyapunov technique to control the bias error in standard least square analysis.

Perspectives:

Contributions:

- No additive noise implies no variance reduction. Last iterate of the constant step-size SGD converges!
- A new Lyapunov technique to control the bias error in standard least square analysis.

Perspectives:

• Insights into optimization of general convex (even non-convex) overparamaterized models.

Contributions:

- No additive noise implies no variance reduction. Last iterate of the constant step-size SGD converges!
- A new Lyapunov technique to control the bias error in standard least square analysis.

Perspectives:

- Insights into optimization of general convex (even non-convex) overparamaterized models.
- A simple and effective setting for understanding interplay between **momentum** with **stochastic/multiplicative** noise.