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Problem Setting
• Least-Square: A stream of i.i.d samples (xi , yi )T

i=1 from an unknown distribution
ρ. We want to minimize the population risk:

R(θ) = 1
2Eρ (〈θ, x〉H − y)2 ,

where θ, x ∈ H, (possibly infinite dimensional) Hilbert space and y ∈ R.

• We study the SGD algorithm:

θt+1 = θt − γ (〈θt , xt〉H − yt) xt

• Aim: bound the excess risk. Denote θ∗ := argminθ∈H R(θ), we bound the
excess risk of the estimator given by the T -th iterate:

ER(θT )−R(θ∗)
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Last Iterate of SGD

• Last iterate of the constant step-size SGD may not converge, Why ?
Noise = Additive (model noise) + Multiplicative (SGD sampling noise)

Additive noise forces to use variance reduction techniques for SGD to converge.

• The noiseless setting: We make the hypothesis that the model is perfect, i.e.,
there is no additive noise, i.e there exists a perfect regressor θ∗

〈θ∗, x〉 = y a.s.

Last iterate of SGD should converge in this model !
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Noiseless Least Squares

• Merits of the noiseless setting. Captures the modern machine learning
architecture: overparameterization and interpolation (w.r.t. training loss)

• Non-strongly convex. For, strongly convex we have linear rates on last iterate.
However, for non-strongly convex it was open.
• Covariance The covariance operator on H:

H := Eρ[x ⊗ x ].

The non-strongly convex setting corresponds to the smallest eigen value being
arbitrarily small and close to 0.
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Main Result

Recall, Risk : R(θ) = 1
2Eρ (〈θ, x〉 − Y )2, SGD: θt+1 = θt − γ (〈θt , xt〉 − yt) xt .

∃R s.t. E
[
‖x‖2 xx>

]
4 RH and ‖θ∗‖H < +∞ (1)

Main Result

For T > 2, if we set γ = (4R ln(T ))−1, we have the following bound for the
expected risk of the estimator given by the T th iterate of SGD:

ER(θT ) 6 3 R ‖θ∗‖2H
ln(T )

T . (2)
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Non-parametric Rates
With further refinements over the spectrum of co-variance i.e. capacity condition

∃ α > 0,Rα > 0 s.t. E
[〈

x ,H−αx
〉

xx>
]
4 RαH (3)

and regularity of optimum i.e. source condition like

∃ β > −1,Cβ > 0 s.t. Cβ = ‖H−β/2θ∗‖2H (4)

Non-parametric rates

For T > 3, where γ1−α 6 (32ξαRα)−1 and ξα =
∑
n>1

1
n1+α , we have

ER(θT ) 6 2
(1 + β

γ

)1+β Cβ
T 1+α∧β (5)
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Conclusion

Contributions:
• No additive noise implies no variance reduction. Last iterate of the constant

step-size SGD converges!

• A new Lyapunov technique to control the bias error in standard least square
analysis.

Perspectives:

• Insights into optimization of general convex (even non-convex) overparamaterized
models.
• A simple and effective setting for understanding interplay between momentum

with stochastic/multiplicative noise.
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