Differentiable Unsupervised Feature Selection based on a Gated Laplacian

Ofir Lindenbaum, Uri Shaham, Erez Peterfreund, Jonathan Svirsky, Nicolas Casey, Yuval Kluger

November 2021

Unsupervised Learning

Find structures in dataset $\tilde{X} = \mathbb{R}^{N \times D_{\mathcal{C}}}$ (no label information)

Unsupervised Learning

Find structures in dataset $\tilde{X} = \mathbb{R}^{N \times D_c}$ (no label information)

Clustering

Find subsets $C_1, ..., C_k \quad \tilde{X}$ so that points within C_i are "similar"

Unsupervised Learning

Find structures in dataset $\tilde{X} = \mathbb{R}^{N \times D_c}$ (no label information)

Clustering

Find subsets $C_1, ..., C_k \quad \tilde{X}$ so that points within C_i are "similar"

Manifold Learning

Embed \tilde{X} into a lower dimension without loosing much information

Consider an \inf oncatenated with nuisance variables

$$X = \tilde{X}/_{1}/.../_{D_{n}}/_{N\times(D_{c}+D_{n})}$$
, where i,j $N(0,1)$ and $D = D_{c} + D_{n}$

Consider an $\dot{\textbf{informative}}$ data $\tilde{\textbf{\textit{X}}}$ concatenated with nuisance variables

$$X = \tilde{X}/_{1}/.../_{D_{n}}/_{N\times(D_{c}+D_{n})}$$
, where i,j $N(0,1)$ and $D = D_{c} + D_{n}$

• Spectral Clustering (Ng. et al.)

Cluster assignments

Consider an \inf informative data $\check{\mathcal{X}}$ concatenated with nuisance variables

$$X = \tilde{X}/_1/.../_{D_n}/_{N\times(D_C+D_n)}$$
, where i,j $N(0,1)$ and $D = D_C + D_n$

• Spectral Clustering (Ng. et al.)

Cluster assignments

Nuisance variables

Consider an **informative** data \tilde{X} concatenated with nuisance variables

$$X = \tilde{X}/_1/.../_{D_n}/_{N\times(D_c+D_n)}$$
, where i,j $N(0,1)$ and $D = D_c + D_n$

• Spectral Clustering (Ng. et al.)

Cluster assignments

Nuisance variables

Cluster assignments

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \tilde{X}/_{1}/.../_{D_{n}}/_{N\times(D_{c}+D_{n})}$, where i,j N(0,1) and $D = D_{c} + D_{n}$

Spectral Clustering (Ng. et al.)

Nuisance variables

Cluster assignments

ISOMAP (Tenenbaum et al.)

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \tilde{X}/_{1}/.../_{D_{n}}/_{N\times(D_{c}+D_{n})}$, where i,j N(0,1) and $D = D_{c} + D_{n}$

• Spectral Clustering (Ng. et al.)

Cluster assignments

Nuisance variables

Cluster assignments

ISOMAP (Tenenbaum et al.)

Nuisance variables

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \tilde{X}/_{1}/.../_{D_{D}}/_{N\times(D_{c}+D_{D})}$, where i,j N(0,1) and $D = D_{c} + D_{D}$

• Spectral Clustering (Ng. et al.)

Cluster assignments

Nuisance variables

Cluster assignments

• ISOMAP (Tenenbaum et al.)

Embedding

Goal (informal)

Find a **subset** of *informative* variables $S = \{1, ..., D\}$ to improve clustering or manifold learning

Goal (informal)

Find a **subset** of *informative* variables $S = \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

Goal (informal)

Find a **subset** of *informative* variables $S = \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

• # of variables exceeds the # of measurements (D > N)

Goal (informal)

Find a **subset** of *informative* variables $S = \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

- # of variables exceeds the # of measurements (D > N)
- Some of the variables are nuisance (i.e. noisy and information-poor)

Goal (informal)

Find a **subset** of *informative* variables $S = \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

- # of variables exceeds the # of measurements (D > N)
- Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:

N- individuals, *D*- genes Cluster traits/conditions

Goal (informal)

Find a **subset** of *informative* variables $S = \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

- # of variables exceeds the # of measurements (D > N)
- Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:

N- individuals, *D*- genes Cluster traits/conditions

Goal (informal)

Find a **subset** of *informative* variables $S = \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

- # of variables exceeds the # of measurements (D > N)
- Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:

N- individuals, *D*- genes Cluster traits/conditions

Risk genes

COOTHF

The idea: use "smoothness" to identify *informative* variables

The graph $Laplacian^1$ is a useful tool for unsupervised learning

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplacian¹ is a useful tool for unsupervised learning Given measurements $\{x_n\}_{n=1}^N$

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplaciah is a useful tool for unsupervised learning Given measurements $x_n g_{n=1}^N$

Compute Gaussian kern $\{d_{i;j} = exp \quad \frac{kX_i - X_j k^2}{2^{-2}} \}$

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplaciah is a useful tool for unsupervised learning Given measuremen fix $_n\,g_{n=1}^N$

Compute Gaussian kern
$$\mathbf{k} \mathbf{1}_{i;j} = \exp_{\mathbf{P}} \frac{k \mathbf{X}_i - \mathbf{X}_j k^2}{2^{-2}}$$

ComputeL = S K , where $\mathbf{S}_{i;i} = \mathbf{P}_j K_{i;j}$

¹Ng et al. (2001), Belkin et al. (2003)

```
Compute Gaussian kern \mathbf{M}_{i;j} = \exp \left[ \begin{array}{cc} \frac{kX_i - X_j k^2}{2^{-2}} \\ \\ \text{ComputeL} = S & \text{K} \text{, where } S_{i;i} = \begin{array}{cc} P \\ \\ \\ \\ \text{j} \end{array} \right] K_{i;j}
Compute eigen-pair \mathbf{S} = \begin{array}{cc} 0 & 1; & \dots; \\ 0 & 1; & \dots; \\ 0 & 1; & \dots; \\ 0 & 1 \end{array}
```

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplaciah is a useful tool for unsupervised learning Given measuremen fix $_n\,g_{n=1}^N$

Compute Gaussian kern
$$\mathbf{M}_{i;j} = \exp \left[\begin{array}{cc} \frac{kX_i - X_j k^2}{2^{-2}} \\ \\ \text{ComputeL} = S & \text{K} \text{, where } S_{i;i} = \begin{array}{cc} P \\ \\ \\ \\ \text{j} \end{array} \right] K_{i;j}$$
Compute eigen-pair $\mathbf{S} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{S} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{S} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

3

1

"Low-frequency" features could be identi ed using the placian-Score²

"Low-frequency" features could be identi ed using the placian-Score²

Normalize each featur
$$\mathbf{e}_d = \frac{f_d}{kf_dk_2}$$
, where $f_d = (x_1^{(d)}; ...; x_N^{(d)})^>$

"Low-frequency" features could be identi ed using thaplacian-Score2

Normalize each feature
$$d = \frac{f_d}{kf_dk_2}$$
, where $d = (x_1^{(d)}; ...; x_N^{(d)})^{>d}$

Compute the Rayleigh quotient

Laplacian-Scor(ed)
$$\stackrel{4}{=}$$
 f $\stackrel{>}{_{d}}$ L f $\stackrel{d}{_{d}}$

"Low-frequency" features could be identi ed using thaplacian-Score2

Normalize each feature
$$d = \frac{f_d}{kf_dk_2}$$
, where $d = (x_1^{(d)}; ...; x_N^{(d)})^{>d}$

Compute the Rayleigh quotient

Laplacian-Scor(ed)
$$\stackrel{4}{=}$$
 $f_d L f_d = {}_{n=0}^{N_X 1} h_n; f_d i^2;$

where $L = {P \choose n=0}^{n-1} {n \choose n} {n \choose n}$ is the eigen-decomposition of

²Niyoqi et al. (2006)

< ₽

"Low-frequency" features could be identi ed using the placian-Score2

Normalize each feature
$$d = \frac{f_d}{kf_dk_2}$$
, where $d = (x_1^{(d)}; ...; x_N^{(d)})^>$

Compute the Rayleigh quotient

Laplacian-Scor(ed)
$$\stackrel{4}{=} f_d L f_d = \frac{1 \times 1}{n=0} n h_n; f_d i^2;$$

where $L = P_{n=0}^{N-1} n_{n-n}$ is the eigen-decomposition of

Feature is correlated with low frequency eigenvectors

"Low-frequency" features could be identi ed using the placian-Score2

Normalize each feature
$$d = \frac{f_d}{kf_dk_2}$$
, where $d = (x_1^{(d)}; ...; x_N^{(d)})^>$

Compute the Rayleigh quotient

Laplacian-Scor(ed)
$$\stackrel{4}{=}$$
 $f_d L f_d = {}_{n=0}^{N_X 1} h_n; f_d i^2;$

where
$$L = P_{n=0}^{N-1} n_{n-n}$$
 is the eigen-decomposition of

Feature is correlated with low frequency eigenvectors

Weighted by small eigenvalues

"Low-frequency" features could be identi ed using the placian-Score2

Normalize each feature
$$d = \frac{f_d}{kf_dk_2}$$
, where $d = (x_1^{(d)}; ...; x_N^{(d)})^>$

Compute the Rayleigh quotient

Laplacian-Scor(ed)
$$\stackrel{4}{=} f_d L f_d = \int_{n=0}^{N_X} f_n h_n; f_d i^2;$$

where
$$L = P_{n=0}^{N-1} n_{n-n}$$
 is the eigen-decomposition of

Feature is correlated with low frequency eigenvectors

Weighted by small eigenvalues

Small Laplacian-Score

"Low-frequency" features could be identi ed using the placian-Score2

Normalize each feature
$$d = \frac{f_d}{kf_dk_2}$$
, where $d = (x_1^{(d)}; ...; x_N^{(d)})^>$

Compute the Rayleigh quotient

Laplacian-Scor(ed)
$$\stackrel{4}{=}$$
 $f_d L f_d = \int_{n=0}^{N_X} f_n h_n; f_d i^2;$

where
$$L = P_{n=0}^{N-1} n_{n-n}$$
 is the eigen-decomposition of

Feature is correlated with low frequency eigenvectors

Weighted by small eigenvalues

Small Laplacian-Score

Problem

When many nuisance variable are added they dominate the Laplacian

"Low-frequency" features could be identi ed using the placian-Score2

Normalize each feature
$$d = \frac{f_d}{kf_dk_2}$$
, where $d = (x_1^{(d)}; ...; x_N^{(d)})^>$

Compute the Rayleigh quotient

Laplacian-Scor(ed)
$$\stackrel{4}{=} f_d L f_d = \int_{n=0}^{N_X} f_n h_n; f_d i^2;$$

where
$$L = \begin{pmatrix} P & N & 1 \\ n & 0 & 1 \end{pmatrix}$$
 is the eigen-decomposition of

Feature is correlated with low frequency eigenvectors

Weighted by small eigenvalues

Small Laplacian-Score

Problem

When many nuisance variable are added they dominate the Laplacian

e.g. (# nuisance variables) (cluster separatio) ! Laplacian "breaks"

Di erentiable Unsupervised Feature Selection (DUFS)

The idea: "clean" the Laplacian by gating nuisance features

Di erentiable Unsupervised Feature Selection (DUFS)

The idea: "clean" the Laplacian by gating nuisance features

Filter features using stochastic gates

Di erentiable Unsupervised Feature Selection (DUFS)

The idea: "clean" the Laplacian by gating nuisance features

Filter features using stochastic gates

De ne the gated measurement matrix

$$X = f_1 z_1 f_2 z_2 ::: f_D z_D$$

Di erentiable Unsupervised Feature Selection (DUFS)

The idea: "clean" the Laplacian by gating nuisance features

Filter features using stochastic gates

De ne the gated measurement matrix

$$X = f_1 z_1 f_2 z_2 ::: f_D z_D$$

Compute the gated di usion operator $P_x = S_x^{-1}K_x$ K_x and S_x are the Kernel and degree matrices

Di erentiable Unsupervised Feature Selection (DUFS)

The idea: "clean" the Laplacian by gating nuisance features

Filter features using stochastic gates

De ne the gated measurement matrix

$$X = f_1 z_1 f_2 z_2 ::: f_D z_D$$

Compute the gated di usion operator $P_x = S_x^{-1}K_x$ K_x and S_x are the Kernel and degree matrices Identify smooth features by minimizing

The idea: use a truncated Gaussian to relax the Bernoulli distribution

The idea: use a truncated Gaussian to relax the Bernoulli distribution

Draw from a Gaussian N (0; 0:5), shift by = 0:5

The idea: use a truncated Gaussian to relax the Bernoulli distribution

Draw from a Gaussian N (0; 0:5), shift by = 0:5

The idea: use a truncated Gaussian to relax the Bernoulli distribution Truncate into [0; 1]

The idea: use a truncated Gaussian to relax the Bernoulli distribution

De ne the STochastic Gate (STG), denoted by z

Learn model and gate parameters by minimizing
$$b = \underset{2R^D}{\text{arg min}} \quad \text{Tr } X \overset{T}{P}_{X}X + \underset{+}{E_{z}kzk_{0}}$$

Learn model and gate parameters by minimizing
$$b = \underset{2R^D}{\text{arg min}} \quad \text{Tr } X \overset{T}{P}_{X}X + \underset{+}{E_{z}kzk_{0}}$$

Learn model and gate parameters by minimizing
$$b = \underset{2R^D}{\text{arg min}} \quad \text{Tr } X \overset{T}{P}_{X}X + \underset{+}{E_{z}kzk_{0}}$$

Learn model and gate parameters by minimizing
$$b = \underset{2R^D}{\text{arg min}} \quad \text{Tr } X \overset{T}{P}_{X}X + \underset{+}{E_{z}kzk_{0}}$$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

Each gate is controlled by a trainable parameter

Learn model and gate parameters by minimizing
$$b = \underset{2R^D}{\text{arg min}} \quad \text{Tr } X \overset{T}{P}_{X}X + \underset{+}{E_{z}kzk_{0}}$$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

Each gate is controlled by a trainable parameter

Learn model and gate parameters by minimizing
$$b = \underset{2R^D}{\text{arg min}} \quad \text{Tr } X \overset{T}{P}_{X}X + \underset{+}{E_{z}kzk_{0}}$$

Results: Noisy Two-moons

Consider arinformative data X concatenated with nuisance variables $X = X_j^* j_{1}^* j_{n}^* j_{n}^* N_{(D)}^*$, where $D = D_c + D_n$, and $i_{i,j} = N(0; 1)$

Results: Noisy Two-moons

Consider arinformative data X concatenated with nuisance variables $X = X^{i}j_{1}j_{1}i_{0}i_{0}$, where $D = D_{c} + D_{n}$, and $i_{i,j} = N(0; 1)$

DUFS performance for di erent number of nuisance variab(e)\$

Use digits of 3s and 8s from noisy MNIST

Use digits of 3s and 8s from noisy MNIST

Results: Real Data

K-means accuracy on benchmark datasets 3 (# of selected features)

Datasets	LS	MCFS	NDFS	LLCFS	SRCFS	CAE	DUFS	All	Dim/Samples/Classes
GISETTE	75.8 (50)	56.5 (50)	69.3 (250)	72.5 (50)	68.5 (50)	77.3 (250)	99.5 (50)	74.4	4955 / 6000 / 2
PIX10	76.6 (150)	75.9 (200)	76.7 (200)	69.1 (300)	76.0 (300)	94.1 (250)	88.4 (50)	74.3	10000 / 100 / 10
COIL20	55.2 (250)	59.7 (250)	60.1 (300)	48.1 (300)	59.9 (300)	65.6 (200)	65.8 (250)	53.6	1024 / 1444 / 20
Yale	42.7 (300)	41.7 (300)	42.5 (300)	42.6 (300)	46.3 (250)	45.4 (250)	47.9 (200)	38.3	1024 / 165 / 15
TOX-171	47.5 (200)	42.5 (100)	46.1 (100)	46.7 (250)	45.8 (150)	44.4 (150)	49.1 (50)	41.5	2000 / 62 / 4
ALLAML	73.2 (150)	68.4 (100)	69.4 (100)	77.8 (50)	67.7 (250)	72.2 (200)	74.5 (100)	67.3	7192 / 72 / 2
PROSTATE	57.5 (300)	57.3 (300)	58.3 (100)	57.8 (50)	60.6 (50)	56.9 (250)	64.7 (150)	58.1	5966 / 102 / 2
RCV1	54.9 (300)	50.1 (150)	55.1 (150)	55.0 (300)	53.7 (300)	54.9 (300)	60.2 (300)	50.0	47236 / 21232 / 2
SRBCT	41.1(300)	43.7(250)	41.0(50)	34.6(150)	33.49(50)	62.6 (200)	51.7 (50)	39.6	2308 / 83 / 4
BIASE	83.8 (200)	95.5 (300)	100 (100)	52.2 (300)	50.8 (50)	85.1 (250)	100 (50)	41.8	25683 / 56 / 4
INTESTINE	43.2 (300)	48.2 (300)	42.3 (100)	63.3 (200)	58.1 (300)	51.9 (50)	71.9 (250)	54.8	3775 / 238 / 13
FAN	42.9 (150)	45.5 (150)	48.8 (100)	29.0 (50)	29.0 (100)	35.2 (300)	49.0 (50)	37.5	25683 / 56 / 8
POLLEN	46.9 (150)	66.5 (300)	48.9 (50)	35.0 (100)	34.9 (300)	58.0 (250)	60.2 (50)	54.9	21810 / 301 / 4
Median rank	4	6	4	4	5	3	1		
Mean rank	4.1	6	3.9	4.6	4.7	3.4	1.3		

³https://jundongl.github.io/scikit-feature/

Conclusion and Future Work

- "Cleaning" the Laplacian prior to calculation of the LS is cruical
- DUFS is also applicable for Manifold Learning
- Potential applications in computational biology, medicine
- Extending the method to handle correlated features
- Code available at https://github.com/Ofirlin/DUFS