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Unsupervised Feature Selection: Motivation
Goal (informal)
Find a subset of informative variables S ⊂ {1, ..., D} to improve
clustering or manifold learning

When should we use feature selection?
# of variables exceeds the # of measurements (D > N)
Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:
N - individuals, D- genes
Cluster traits/conditions

⇒

The idea: use "smoothness" to identify informative variables



Unsupervised Feature Selection: Motivation
Goal (informal)
Find a subset of informative variables S ⊂ {1, ..., D} to improve
clustering or manifold learning

When should we use feature selection?

# of variables exceeds the # of measurements (D > N)
Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:
N - individuals, D- genes
Cluster traits/conditions

⇒

The idea: use "smoothness" to identify informative variables



Unsupervised Feature Selection: Motivation
Goal (informal)
Find a subset of informative variables S ⊂ {1, ..., D} to improve
clustering or manifold learning

When should we use feature selection?
# of variables exceeds the # of measurements (D > N)

Some of the variables are nuisance (i.e. noisy and information-poor)
Bio-informatics:
N - individuals, D- genes
Cluster traits/conditions

⇒
The idea: use "smoothness" to identify informative variables



Unsupervised Feature Selection: Motivation
Goal (informal)
Find a subset of informative variables S ⊂ {1, ..., D} to improve
clustering or manifold learning

When should we use feature selection?
# of variables exceeds the # of measurements (D > N)
Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:
N - individuals, D- genes
Cluster traits/conditions

⇒
The idea: use "smoothness" to identify informative variables



Unsupervised Feature Selection: Motivation
Goal (informal)
Find a subset of informative variables S ⊂ {1, ..., D} to improve
clustering or manifold learning

When should we use feature selection?
# of variables exceeds the # of measurements (D > N)
Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:
N - individuals, D- genes
Cluster traits/conditions

⇒
The idea: use "smoothness" to identify informative variables



Unsupervised Feature Selection: Motivation
Goal (informal)
Find a subset of informative variables S ⊂ {1, ..., D} to improve
clustering or manifold learning

When should we use feature selection?
# of variables exceeds the # of measurements (D > N)
Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:
N - individuals, D- genes
Cluster traits/conditions

⇒

The idea: use "smoothness" to identify informative variables



Unsupervised Feature Selection: Motivation
Goal (informal)
Find a subset of informative variables S ⊂ {1, ..., D} to improve
clustering or manifold learning

When should we use feature selection?
# of variables exceeds the # of measurements (D > N)
Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:
N - individuals, D- genes
Cluster traits/conditions

⇒
The idea: use "smoothness" to identify informative variables



Unsupervised Learning: Kernel Methods

The graph Laplacian1 is a useful tool for unsupervised learning

Given measurements {xn}Nn=1

Compute Gaussian kernel Ki,j = exp
(
−‖xi−xj‖

2

2σ2

)
Compute L = S −K, where Si,i =

∑
jKi,j

Compute eigen-pairs 0 = λ0 ≤ λ1, ..., λN−1 and {ψn}N−1
n=0

ψ0 ψ1 ψ2 ψ3 ψ4
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Di�erentiable Unsupervised Feature Selection (DUFS)

The idea: "clean" the Laplacian by gating nuisance features

1 Filter features using stochastic gates

2 De�ne the gated measurement matrix
�X =

h
�f 1 � z1

�
� �f 2 � z2

�
� :::

�
� �f D � zD

i

3 Compute thegated di�usion operator P �x = S � 1
�x K �x

K �x and S �x are the Kernel and degree matrices
4 Identify smooth features by minimizing

L(� ) := � Tr
� �X

T
P �x �X

�

| {z }
Smoothness

+ � Ezkzk0| {z }
Regularization
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Consider aninformative data ~X concatenated with nuisance variables
X =
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, whereD = Dc + Dn , and � i;j � N (0; 1)

DUFS performance for di�erent number of nuisance variables(d)
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Results: Real Data

K-means accuracy on benchmark datasets3 ( # of selected features)

Datasets LS MCFS NDFS LLCFS SRCFS CAE DUFS All Dim/Samples/Classes

GISETTE 75.8 (50) 56.5 (50) 69.3 (250) 72.5 (50) 68.5 (50) 77.3 (250) 99.5 (50) 74.4 4955 / 6000 / 2
PIX10 76.6 (150) 75.9 (200) 76.7 (200) 69.1 (300) 76.0 (300) 94.1 (250) 88.4 (50) 74.3 10000 / 100 / 10
COIL20 55.2 (250) 59.7 (250) 60.1 (300) 48.1 (300) 59.9 (300) 65.6 (200) 65.8 (250) 53.6 1024 / 1444 / 20
Yale 42.7 (300) 41.7 (300) 42.5 (300) 42.6 (300) 46.3 (250) 45.4 (250) 47.9 (200) 38.3 1024 / 165 / 15
TOX-171 47.5 (200) 42.5 (100) 46.1 (100) 46.7 (250) 45.8 (150) 44.4 (150) 49.1 (50) 41.5 2000 / 62 / 4
ALLAML 73.2 (150) 68.4 (100) 69.4 (100) 77.8 (50) 67.7 (250) 72.2 (200) 74.5 (100) 67.3 7192 / 72 / 2
PROSTATE 57.5 (300) 57.3 (300) 58.3 (100) 57.8 (50) 60.6 (50) 56.9 (250) 64.7 (150) 58.1 5966 / 102 / 2
RCV1 54.9 (300) 50.1 (150) 55.1 (150) 55.0 (300) 53.7 (300) 54.9 (300) 60.2 (300) 50.0 47236 / 21232 / 2
SRBCT 41.1(300) 43.7(250) 41.0(50) 34.6(150) 33.49(50) 62.6 (200) 51.7 (50) 39.6 2308 / 83 / 4
BIASE 83.8 (200) 95.5 (300) 100 (100) 52.2 (300) 50.8 (50) 85.1 (250) 100 (50) 41.8 25683 / 56 / 4
INTESTINE 43.2 (300) 48.2 (300) 42.3 (100) 63.3 (200) 58.1 (300) 51.9 (50) 71.9 (250) 54.8 3775 / 238 / 13
FAN 42.9 (150) 45.5 (150) 48.8 (100) 29.0 (50) 29.0 (100) 35.2 (300) 49.0 (50) 37.5 25683 / 56 / 8
POLLEN 46.9 (150) 66.5 (300) 48.9 (50) 35.0 (100) 34.9 (300) 58.0 (250) 60.2 (50) 54.9 21810 / 301 / 4

Median rank 4 6 4 4 5 3 1
Mean rank 4.1 6 3.9 4.6 4.7 3.4 1.3

3https://jundongl.github.io/scikit-feature/



Conclusion and Future Work

"Cleaning" the Laplacian prior to calculation of the LS is cruical
DUFS is also applicable for Manifold Learning
Potential applications in computational biology, medicine
Extending the method to handle correlated features
Code available at https://github.com/Ofirlin/DUFS
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