Differentiable Unsupervised Feature Selection based on a Gated Laplacian

Ofir Lindenbaum, Uri Shaham, Erez Peterfreund, Jonathan Svirsky, Nicolas Casey, Yuval Kluger

November 2021

Unsupervised Learning

Find structures in dataset $ilde{m{X}} \in \mathbb{R}^{N imes D_c}$ (no label information)

Unsupervised Learning

Find structures in dataset $ilde{m{X}} \in \mathbb{R}^{N imes D_c}$ (no label information)

Clustering

Find subsets $C_1,...,C_k\subset \tilde{X}$ so that points within C_i are "similar"

Unsupervised Learning

Find structures in dataset $ilde{X} \in \mathbb{R}^{N \times D_c}$ (no label information)

Clustering

Find subsets $C_1,...,C_k\subset ilde{oldsymbol{X}}$ so that points within C_i are "similar"

Manifold Learning

Embed $ilde{X}$ into a lower dimension without loosing much information

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\boldsymbol{\xi}_1|...|\boldsymbol{\xi}_{D_n}\right]_{N \times (D_c + D_n)}$, where $\xi_{i,j} \sim N(0,1)$ and $D = D_c + D_n$

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\xi_1|...|\xi_{D_n}\right]_{N \times (D_c + D_n)}$, where $\xi_{i,j} \sim N(0,1)$ and $D = D_c + D_n$ • Spectral Clustering (Ng. et al.)

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\xi_1|...|\xi_{D_n}\right]_{N \times (D_c + D_n)}$, where $\xi_{i,j} \sim N(0,1)$ and $D = D_c + D_n$ • Spectral Clustering (Ng. et al.)

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\xi_1|...|\xi_{D_n}\right]_{N \times (D_c + D_n)}$, where $\xi_{i,j} \sim N(0,1)$ and $D = D_c + D_n$ • Spectral Clustering (Ng. et al.)

Nuisance variables

Cluster assignments

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\xi_1|...|\xi_{D_n}\right]_{N \times (D_c + D_n)}$, where $\xi_{i,j} \sim N(0,1)$ and $D = D_c + D_n$ • Spectral Clustering (Ng. et al.)

Cluster assignments

Nuisance variables

Cluster assignments

• ISOMAP (Tenenbaum et al.)

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\xi_1|...|\xi_{D_n}\right]_{N \times (D_c + D_n)}$, where $\xi_{i,j} \sim N(0,1)$ and $D = D_c + D_n$ • Spectral Clustering (Ng. et al.)

Cluster assignments

Nuisance variables

Cluster assignments

• ISOMAP (Tenenbaum et al.)

Nuisance variables

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\xi_1|...|\xi_{D_n}\right]_{N \times (D_c + D_n)}$, where $\xi_{i,j} \sim N(0,1)$ and $D = D_c + D_n$ • Spectral Clustering (Ng. et al.)

Cluster assignments

Nuisance variables

Cluster assignments

• ISOMAP (Tenenbaum et al.)

Nuisance variables

Goal (informal)

Find a subset of *informative* variables $S \subset \{1, ..., D\}$ to improve clustering or manifold learning

Goal (informal)

Find a subset of *informative* variables $S \subset \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

Goal (informal)

Find a subset of *informative* variables $S \subset \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

• # of variables exceeds the # of measurements (D > N)

Goal (informal)

Find a subset of *informative* variables $S \subset \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

- # of variables exceeds the # of measurements (D > N)
- Some of the variables are nuisance (i.e. noisy and information-poor)

Goal (informal)

Find a subset of *informative* variables $S \subset \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

- # of variables exceeds the # of measurements (D > N)
- Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:

 $N\mathchar`-$ individuals, $D\mathchar`-$ genes Cluster traits/conditions

Goal (informal)

Find a subset of *informative* variables $\mathcal{S} \subset \{1,...,D\}$ to improve clustering or manifold learning

When should we use feature selection?

- # of variables exceeds the # of measurements (D > N)
- Some of the variables are nuisance (i.e. noisy and information-poor)

Bio-informatics:

 $N\mathchar`-$ individuals, $D\mathchar`-$ genes Cluster traits/conditions

Goal (informal)

Find a subset of *informative* variables $S \subset \{1, ..., D\}$ to improve clustering or manifold learning

When should we use feature selection?

- # of variables exceeds the # of measurements (D > N)
- Some of the variables are nuisance (i.e. noisy and information-poor)

dene₁

Bio-informatics:

gene_D

The graph Laplacian¹ is a useful tool for unsupervised learning

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplacian ^1 is a useful tool for unsupervised learning Given measurements $\{x_n\}_{n=1}^N$

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplacian 1 is a useful tool for unsupervised learning Given measurements $\{x_n\}_{n=1}^N$

• Compute Gaussian kernel
$$K_{i,j} = \exp\left(-rac{\|m{x}_i-m{x}_j\|^2}{2\sigma^2}
ight)$$

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplacian¹ is a useful tool for unsupervised learning Given measurements $\{x_n\}_{n=1}^N$

- Compute Gaussian kernel $K_{i,j} = \exp\left(-\frac{\|\boldsymbol{x}_i \boldsymbol{x}_j\|^2}{2\sigma^2}\right)$
- Compute $oldsymbol{L} = oldsymbol{S} oldsymbol{K}$, where $S_{i,i} = \sum_j K_{i,j}$

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplacian¹ is a useful tool for unsupervised learning Given measurements $\{x_n\}_{n=1}^N$

- Compute Gaussian kernel $K_{i,j} = \exp\left(-\frac{\|m{x}_i m{x}_j\|^2}{2\sigma^2}
 ight)$
- Compute $oldsymbol{L} = oldsymbol{S} oldsymbol{K}$, where $S_{i,i} = \sum_j K_{i,j}$
- Compute eigen-pairs $0 = \lambda_0 \leq \lambda_1, ..., \lambda_{N-1}$ and $\{ \psi_n \}_{n=0}^{N-1}$

¹Ng et al. (2001), Belkin et al. (2003)

The graph Laplacian¹ is a useful tool for unsupervised learning Given measurements $\{x_n\}_{n=1}^N$

- Compute Gaussian kernel $K_{i,j} = \exp\left(-\frac{\|\boldsymbol{x}_i \boldsymbol{x}_j\|^2}{2\sigma^2}\right)$
- Compute $oldsymbol{L} = oldsymbol{S} oldsymbol{K}$, where $S_{i,i} = \sum_j K_{i,j}$
- Compute eigen-pairs $0 = \lambda_0 \leq \lambda_1, ..., \lambda_{N-1}$ and $\{ \psi_n \}_{n=0}^{N-1}$

"Low-frequency" features could be identified using the Laplacian-Score²

"Low-frequency" features could be identified using the ${\it Laplacian-Score}^2$

• Normalize each feature
$$ar{m{f}}_d=rac{m{f}_d}{\|m{f}_d\|_2}$$
, where $m{f}_d=(x_1^{(d)},...,x_N^{(d)})^ op$

"Low-frequency" features could be identified using the Laplacian-Score²

- Normalize each feature $ar{f}_d = rac{f_d}{\|f_d\|_2}$, where $f_d = (x_1^{(d)},...,x_N^{(d)})^ op$
- Compute the Rayleigh quotient

 $\mathsf{Laplacian}\text{-}\mathsf{Score}(d) \stackrel{\triangle}{=} \bar{\boldsymbol{f}}_d^\top \boldsymbol{L}\bar{\boldsymbol{f}}_d$

"Low-frequency" features could be identified using the Laplacian-Score²

- Normalize each feature $\bar{\pmb{f}}_d=\frac{\pmb{f}_d}{\|\pmb{f}_d\|_2}$, where $\pmb{f}_d=(x_1^{(d)},...,x_N^{(d)})^\top$
- Compute the Rayleigh quotient Laplacian-Score $(d) \stackrel{ riangle}{=} \bar{\boldsymbol{f}}_d^\top \boldsymbol{L} \bar{\boldsymbol{f}}_d = \sum_{n=0}^{N-1} \lambda_n \langle \boldsymbol{\psi}_n, \bar{\boldsymbol{f}}_d \rangle^2,$

where $oldsymbol{L} = \sum_{n=0}^{N-1} \lambda_n oldsymbol{\psi}_n oldsymbol{\psi}_n^ op$ is the eigen-decomposition of $oldsymbol{L}$

"Low-frequency" features could be identified using the Laplacian-Score²

- Normalize each feature $\bar{\pmb{f}}_d=\frac{\pmb{f}_d}{\|\pmb{f}_d\|_2}$, where $\pmb{f}_d=(x_1^{(d)},...,x_N^{(d)})^\top$
- Compute the Rayleigh quotient Laplacian-Score $(d) \stackrel{\Delta}{=} \bar{\boldsymbol{f}}_d^\top \boldsymbol{L} \bar{\boldsymbol{f}}_d = \sum_{n=0}^{N-1} \lambda_n \langle \boldsymbol{\psi}_n, \bar{\boldsymbol{f}}_d \rangle^2,$

where $oldsymbol{L} = \sum_{n=0}^{N-1} \lambda_n oldsymbol{\psi}_n oldsymbol{\psi}_n^ op$ is the eigen-decomposition of $oldsymbol{L}$

Feature is correlated with low frequency eigenvectors

"Low-frequency" features could be identified using the Laplacian-Score²

- Normalize each feature $\bar{f}_d = \frac{f_d}{\|f_d\|_2}$, where $f_d = (x_1^{(d)}, ..., x_N^{(d)})^\top$
- Compute the Rayleigh quotient $\mathsf{Laplacian-Score}(d) \stackrel{\triangle}{=} \bar{\boldsymbol{f}}_d^\top \boldsymbol{L} \bar{\boldsymbol{f}}_d = \sum^{N-1} \lambda_n \langle \boldsymbol{\psi}_n, \bar{\boldsymbol{f}}_d \rangle^2,$

where $L = \sum_{n=0}^{N-1} \lambda_n \psi_n \psi_n^{\top}$ is the eigen-decomposition of L

Feature is correlated with low frequency eigenvectors

"Low-frequency" features could be identified using the Laplacian-Score²

• Normalize each feature $ar{f}_d = rac{f_d}{\|f_d\|_2}$, where $f_d = (x_1^{(d)},...,x_N^{(d)})^ op$

• Compute the Rayleigh quotient
Laplacian-Score
$$(d) \stackrel{ riangle}{=} \bar{\boldsymbol{f}}_d^\top \boldsymbol{L} \bar{\boldsymbol{f}}_d = \sum_{n=0}^{N-1} \lambda_n \langle \boldsymbol{\psi}_n, \bar{\boldsymbol{f}}_d \rangle^2,$$

where $m{L} = \sum_{n=0}^{N-1} \lambda_n m{\psi}_n m{\psi}_n^ op$ is the eigen-decomposition of $m{L}$

"Low-frequency" features could be identified using the Laplacian-Score²

- Normalize each feature $\bar{\pmb{f}}_d=\frac{\pmb{f}_d}{\|\pmb{f}_d\|_2}$, where $\pmb{f}_d=(x_1^{(d)},...,x_N^{(d)})^\top$
- Compute the Rayleigh quotient Laplacian-Score $(d) \stackrel{ riangle}{=} \bar{\boldsymbol{f}}_d^\top \boldsymbol{L} \bar{\boldsymbol{f}}_d = \sum_{n=0}^{N-1} \lambda_n \langle \boldsymbol{\psi}_n, \bar{\boldsymbol{f}}_d \rangle^2,$

where $m{L} = \sum_{n=0}^{N-1} \lambda_n m{\psi}_n m{\psi}_n^ op$ is the eigen-decomposition of $m{L}$

Problem

When many nuisance variable are added they dominate the Laplacian

²Niyogi et al. (2006)

"Low-frequency" features could be identified using the Laplacian-Score²

- Normalize each feature $ar{f}_d = rac{f_d}{\|f_d\|_2}$, where $f_d = (x_1^{(d)},...,x_N^{(d)})^ op$
- Compute the Rayleigh quotient Laplacian-Score $(d) \stackrel{ riangle}{=} \bar{\boldsymbol{f}}_d^\top \boldsymbol{L} \bar{\boldsymbol{f}}_d = \sum_{n=0}^{N-1} \lambda_n \langle \boldsymbol{\psi}_n, \bar{\boldsymbol{f}}_d \rangle^2,$

where $m{L} = \sum_{n=0}^{N-1} \lambda_n m{\psi}_n m{\psi}_n^ op$ is the eigen-decomposition of $m{L}$

Problem

When many nuisance variable are added they dominate the Laplacian

e.g. (# nuisance variables) \sim (cluster separation) $^4 \rightarrow$ Laplacian "breaks"

²Niyogi et al. (2006)

The idea: "clean" the Laplacian by gating nuisance features

Filter features using stochastic gates

The idea: "clean" the Laplacian by gating nuisance features

Filter features using stochastic gates

3 Define the **gated** measurement matrix $\bar{X} = \begin{bmatrix} \bar{f}_1 \cdot z_1 & \bar{f}_2 \cdot z_2 & \dots & |\bar{f}_D \cdot z_D \end{bmatrix}$

The idea: "clean" the Laplacian by gating nuisance features

Filter features using stochastic gates

- **2** Define the **gated** measurement matrix $\bar{X} = \begin{bmatrix} \bar{f}_1 \cdot z_1 \\ \bar{f}_2 \cdot z_2 \end{bmatrix} \dots \begin{bmatrix} \bar{f}_D \cdot z_D \end{bmatrix}$
- 3 Compute the **gated** diffusion operator $P_{\bar{x}} = S_{\bar{x}}^{-1}K_{\bar{x}}$ $K_{\bar{x}}$ and $S_{\bar{x}}$ are the Kernel and degree matrices

The idea: "clean" the Laplacian by gating nuisance features

Filter features using stochastic gates

- **2** Define the **gated** measurement matrix $\bar{X} = \begin{bmatrix} \bar{f}_1 \cdot z_1 & \bar{f}_2 \cdot z_2 & \dots & |\bar{f}_D \cdot z_D \end{bmatrix}$
- Ompute the gated diffusion operator $P_{\bar{x}} = S_{\bar{x}}^{-1} K_{\bar{x}}$ $K_{\bar{x}}$ and $S_{\bar{x}}$ are the Kernel and degree matrices
- Identify smooth features by minimizing

$$L(\boldsymbol{\mu}) := -\underbrace{\mathsf{Tr}[\bar{\boldsymbol{X}}^T \boldsymbol{P}_{\bar{x}} \bar{\boldsymbol{X}}]}_{\mathsf{Smoothness}} + \lambda \underbrace{\mathbb{E}_{\mathsf{z}} \| \mathbf{z} \|_{0}}_{\mathsf{Regularization}}$$

(The idea: use a truncated Gaussian to relax the Bernoulli distribution

The idea: use a truncated Gaussian to relax the Bernoulli distribution

 $\bullet\,$ Draw from a Gaussian $\epsilon \sim N(0,0.5),$ shift by $\mu = 0.5$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

 $\bullet\,$ Draw from a Gaussian $\epsilon \sim N(0,0.5),$ shift by $\mu = 0.5$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

• Truncate into [0,1]

The idea: use a truncated Gaussian to relax the Bernoulli distribution

• Define the STochastic Gate (STG), denoted by z

The idea: use a truncated Gaussian to relax the Bernoulli distribution

 $\bullet\,$ Each gate is controlled by a trainable parameter μ

$$\mu = -1$$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

• Each gate is controlled by a trainable parameter μ

$$\mu = -0.5$$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

• Each gate is controlled by a trainable parameter μ

$$\mu = 0$$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

 $\bullet\,$ Each gate is controlled by a trainable parameter μ

• Learn model and gate parameters by minimizing $\hat{\boldsymbol{\mu}} = \underset{\boldsymbol{\mu} \in \mathbb{R}^{D}}{\arg\min} - \operatorname{Tr}[\bar{\boldsymbol{X}}^{T} \boldsymbol{P}_{\bar{x}} \bar{\boldsymbol{X}}] + \lambda \underset{\boldsymbol{\Psi}}{\mathbb{E}_{z}} \| \mathbf{z} \|_{0}$ $\sum_{d=1}^{D} \Phi(\frac{\mu_{d}}{0.5})$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

 $\bullet\,$ Each gate is controlled by a trainable parameter μ

$$\mu = 1$$

$$0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0$$
• Learn model and gate parameters by minimizing
$$\hat{\mu} = \underset{\mu \in \mathbb{R}^{D}}{\operatorname{arg\,min}} - \operatorname{Tr}[\bar{\boldsymbol{X}}^{T} \boldsymbol{P}_{\bar{\boldsymbol{x}}} \bar{\boldsymbol{X}}] + \lambda \underset{\mu \in \mathbb{R}^{D}}{\mathbb{E}} \|\boldsymbol{z}\|_{0}$$

$$\sum_{j=1}^{D} \Phi(\frac{\mu_{d}}{0.5})$$

d-

The idea: use a truncated Gaussian to relax the Bernoulli distribution

• Each gate is controlled by a trainable parameter μ

$$\mu = 1.5$$

The idea: use a truncated Gaussian to relax the Bernoulli distribution

• Each gate is controlled by a trainable parameter μ

$$\mu = 2$$

Results: Noisy Two-moons

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\boldsymbol{\xi}_1|...|\boldsymbol{\xi}_{D_n}\right]_{N \times (D)}$, where $D = D_c + D_n$, and $\xi_{i,j} \sim N(0,1)$

Results: Noisy Two-moons

Consider an **informative** data \tilde{X} concatenated with nuisance variables $X = \left[\tilde{X}|\boldsymbol{\xi}_1|...|\boldsymbol{\xi}_{D_n}\right]_{N \times (D)}$, where $D = D_c + D_n$, and $\boldsymbol{\xi}_{i,j} \sim N(0,1)$

Use digits of $3\mathsf{s}$ and $8\mathsf{s}$ from noisy MNIST

Use digits of $3 \mbox{s}$ and $8 \mbox{s}$ from noisy MNIST

Results: Real Data

K-means accuracy on benchmark datasets³ (# of selected features)

Datasets	LS	MCFS	NDFS	LLCFS	SRCFS	CAE	DUFS	All	Dim/Samples/Classes
GISETTE	75.8 (50)	56.5 (50)	69.3 (250)	72.5 (50)	68.5 (50)	77.3 (250)	99.5 (50)	74.4	4955 / 6000 / 2
PIX10	76.6 (150)	75.9 (200)	76.7 (200)	69.1 (300)	76.0 (300)	94.1 (250)	88.4 (50)	74.3	10000 / 100 / 10
COIL20	55.2 (250)	59.7 (250)	60.1 (300)	48.1 (300)	59.9 (300)	65.6 (200)	65.8 (250)	53.6	1024 / 1444 / 20
Yale	42.7 (300)	41.7 (300)	42.5 (300)	42.6 (300)	46.3 (250)	45.4 (250)	47.9 (200)	38.3	1024 / 165 / 15
TOX-171	47.5 (200)	42.5 (100)	46.1 (100)	46.7 (250)	45.8 (150)	44.4 (150)	49.1 (50)	41.5	2000 / 62 / 4
ALLAML	73.2 (150)	68.4 (100)	69.4 (100)	77.8 (50)	67.7 (250)	72.2 (200)	74.5 (100)	67.3	7192 / 72 / 2
PROSTATE	57.5 (300)	57.3 (300)	58.3 (100)	57.8 (50)	60.6 (50)	56.9 (250)	64.7 (150)	58.1	5966 / 102 / 2
RCV1	54.9 (300)	50.1 (150)	55.1 (150)	55.0 (300)	53.7 (300)	54.9 (300)	60.2 (300)	50.0	47236 / 21232 / 2
SRBCT	41.1(300)	43.7(250)	41.0(50)	34.6(150)	33.49(50)	62.6 (200)	51.7 (50)	39.6	2308 / 83 / 4
BIASE	83.8 (200)	95.5 (300)	100 (100)	52.2 (300)	50.8 (50)	85.1 (250)	100 (50)	41.8	25683 / 56 / 4
INTESTINE	43.2 (300)	48.2 (300)	42.3 (100)	63.3 (200)	58.1 (300)	51.9 (50)	71.9 (250)	54.8	3775 / 238 / 13
FAN	42.9 (150)	45.5 (150)	48.8 (100)	29.0 (50)	29.0 (100)	35.2 (300)	49.0 (50)	37.5	25683 / 56 / 8
POLLEN	46.9 (150)	66.5 (300)	48.9 (50)	35.0 (100)	34.9 (300)	58.0 (250)	60.2 (50)	54.9	21810 / 301 / 4
Median rank	4	6	4	4	5	3	1		
Mean rank	4.1	6	3.9	4.6	4.7	3.4	1.3		

³https://jundongl.github.io/scikit-feature/

Conclusion and Future Work

- "Cleaning" the Laplacian prior to calculation of the LS is cruical
- DUFS is also applicable for Manifold Learning
- Potential applications in computational biology, medicine
- Extending the method to handle correlated features
- Code available at https://github.com/Ofirlin/DUFS