Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning

Aodong Li¹ Alex Boyd² Padhraic Smyth^{1,2} Stephan Mandt^{1,2}

¹Department of Computer Science ²Department of Statistics

University of California, Irvine

Learning in a sequential environment is important. Some practical examples include...

Learning in a sequential environment is important. Some practical examples include...

"work from home" before and during the pandemic.

Learning in a sequential environment is important. Some practical examples include...

Aodong Li (Department of Computer Science, UCI)

Learning in a sequential environment is important. Some practical examples include...

Learning in a sequential environment is important. Some practical examples include...

The environments are changing, which requires the model to update in an online fashion.

Bayesian Online Learning

Bayesian Online Learning

• Repeatedly using Bayes' theorem naturally leads to an online learning framework

Bayesian Online Learning

• Repeatedly using Bayes' theorem naturally leads to an online learning framework

Bayesian Online Learning with Distribution Shift: the Problem

• Bayesian online learning lacks efficiency in a changing environment.

Bayesian Online Learning with Distribution Shift: the Problem

- Bayesian online learning lacks efficiency in a changing environment.
- Reason: as the posterior shrinks when evidence accumulates, Bayesian online learning will get stuck with the first plausible solution.

Bayesian Online Learning with Distribution Shift: the Problem

- Bayesian online learning lacks efficiency in a changing environment.
- Reason: as the posterior shrinks when evidence accumulates, Bayesian online learning will get stuck with the first plausible solution.

Aodong Li (Department of Computer Science, UCI)

Adaptive Bayesian Online Learning

• Introduce an additional step to allow for partial forgetting of the previous information.

• Introduce an additional step to allow for partial forgetting of the previous information.

Examples

• Broaden the variance at every time step $Var(z) \leftarrow \beta^{-1}Var(z)$ where $\beta \in (0, 1)$ [Kulhavỳ and Zarrop, 1993, Kurle et al., 2020].

• Introduce an additional step to allow for partial forgetting of the previous information.

Examples

- Broaden the variance at every time step Var(z) ← β⁻¹Var(z) where β ∈ (0, 1) [Kulhavỳ and Zarrop, 1993, Kurle et al., 2020].
- Introduce additional noise [Welch et al., 1995] $\mathbf{z}_{t+1} = \mathbf{z}_t + \epsilon_t$.

• Introduce an additional step to allow for partial forgetting of the previous information.

Examples

- Broaden the variance at every time step Var(z) ← β⁻¹Var(z) where β ∈ (0, 1) [Kulhavỳ and Zarrop, 1993, Kurle et al., 2020].
- Introduce additional noise [Welch et al., 1995] $\mathbf{z}_{t+1} = \mathbf{z}_t + \epsilon_t$.
- However, the distribution shifts can vary at different rates, and the constant forgetting rate may not apply for all scenarios.

• To automatically determine when to adapt, we introduce a conditional prior for step t.

• To automatically determine when to adapt, we introduce a conditional prior for step t.

• To automatically determine when to adapt, we introduce a conditional prior for step t.

• With a binary change variable $s_t \in \{0, 1\}$ and an inverse temperature $0 < \beta < 1$

$$p(\boldsymbol{z}_t | \boldsymbol{s}_t; \boldsymbol{\tau}_t) = \begin{cases} \mathcal{N}(\boldsymbol{z}_t; \boldsymbol{\mu}_{t-1}, \sigma_{t-1}^2), & \boldsymbol{s}_t = \boldsymbol{0} \\ \mathcal{N}(\boldsymbol{z}_t; \boldsymbol{\mu}_{t-1}, \beta^{-1} \sigma_{t-1}^2), & \boldsymbol{s}_t = \boldsymbol{1} \end{cases}$$

where τ_t extracts the previous posterior's mean $\mu_{t-1}(q_{t-1})$ and variance $\sigma_{t-1}(q_{t-1})$.

$$p(\boldsymbol{x}_{1:T}, \boldsymbol{z}_{1:T}, \boldsymbol{s}_{1:T}) = \prod_{t=1}^{T}$$

$$p(\boldsymbol{x}_{1:T}, \boldsymbol{z}_{1:T}, \boldsymbol{s}_{1:T}) = \prod_{t=1}^{T} p(\boldsymbol{s}_t)$$

$$p(\mathbf{x}_{1:T}, \mathbf{z}_{1:T}, \mathbf{s}_{1:T}) = \prod_{t=1}^{T} p(s_t) p(\mathbf{z}_t | s_t; \tau_t)$$

$$p(\mathbf{x}_{1:T}, \mathbf{z}_{1:T}, \mathbf{s}_{1:T}) = \prod_{t=1}^{T} p(s_t) p(\mathbf{z}_t | \mathbf{s}_t; \mathbf{\tau}_t) p(\mathbf{x}_t | \mathbf{z}_t)$$

• Our model's joint distribution factorizes as follows:

$$p(\boldsymbol{x}_{1:T}, \boldsymbol{z}_{1:T}, \boldsymbol{s}_{1:T}) = \prod_{t=1}^{T} p(s_t) p(\boldsymbol{z}_t | s_t; \tau_t) p(\boldsymbol{x}_t | \boldsymbol{z}_t)$$

• $\tau_t = \mathcal{F}[p(\mathbf{z}_{t-1}|\mathbf{x}_{1:t-1}, \mathbf{s}_{1:t-1})]$. Throughout our work, we use a specific form $\tau_t \equiv \{\mu_{t-1}, \Sigma_{t-1}\} \equiv \{\text{Mean}, \text{Var}\}[\mathbf{z}_{t-1}|\mathbf{x}_{1:t-1}, \mathbf{s}_{1:t-1}]$

• Simple in a tractable model! Similar to a likelihood-ratio test!

- Simple in a tractable model! Similar to a likelihood-ratio test!
- The posterior of s_t is again a Bernoulli distribution $p(s_t | s_{1:t-1}, \mathbf{x}_{1:t}) = \text{Bern}(s_t; m)$

$$m = \sigma \left(\log \frac{p(\mathbf{x}_t | \mathbf{s}_t = 1, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\mathbf{x}_t | \mathbf{s}_t = 0, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})} + \xi_0 \right),$$

 $\xi_0 = \log p(s_t = 1) - \log p(s_t = 0)$ are the log-odds of the prior $p(s_t)$.

- Simple in a tractable model! Similar to a likelihood-ratio test!
- The posterior of s_t is again a Bernoulli distribution $p(s_t | s_{1:t-1}, \mathbf{x}_{1:t}) = \text{Bern}(s_t; m)$

$$m = \sigma \left(\log \frac{p(\mathbf{x}_t | \mathbf{s}_t = 1, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\mathbf{x}_t | \mathbf{s}_t = 0, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})} + \xi_0 \right),$$

 $\xi_0 = \log p(s_t = 1) - \log p(s_t = 0)$ are the log-odds of the prior $p(s_t)$.

• Same in an intractable model with variational inference!

- Simple in a tractable model! Similar to a likelihood-ratio test!
- The posterior of s_t is again a Bernoulli distribution $p(s_t | s_{1:t-1}, x_{1:t}) = Bern(s_t; m)$

$$m = \sigma \left(\log \frac{p(\mathbf{x}_t | \mathbf{s}_t = 1, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\mathbf{x}_t | \mathbf{s}_t = 0, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})} + \xi_0 \right),$$

 $\xi_0 = \log p(s_t = 1) - \log p(s_t = 0)$ are the log-odds of the prior $p(s_t)$.

- Same in an intractable model with variational inference!
- The variational posterior of s_t is also a Bernoulli distribution Bern $(s_t; m)$

$$m = \sigma \left(\log \underbrace{\frac{\exp \mathcal{L}(\boldsymbol{q}^*(\boldsymbol{z}_t) | \boldsymbol{s}_t = 1, \boldsymbol{s}_{1:t-1})}{\exp \mathcal{L}(\boldsymbol{q}^*(\boldsymbol{z}_t) | \boldsymbol{s}_t = 0, \boldsymbol{s}_{1:t-1})}}_{\approx \rho(\boldsymbol{x}_t | \boldsymbol{s}_t = 0, \boldsymbol{s}_{1:t-1}, \boldsymbol{x}_{1:t-1})} + \xi_0 \right),$$

Exponential Branching and Greedy Search

• At time step *t*, the posterior branches into two configurations:

$$\begin{cases} s_t = 0 : & p(\mathbf{z}_t | s_t = 0, \mathbf{x}_{1:t}, s_{1:t-1}) \text{ weighted by } p(s_t = 0 | \mathbf{x}_{1:t}, s_{1:t-1}) \\ s_t = 1 : & p(\mathbf{z}_t | s_t = 1, \mathbf{x}_{1:t}, s_{1:t-1}) \text{ weighted by } p(s_t = 1 | \mathbf{x}_{1:t}, s_{1:t-1}) \end{cases}$$

Exponential Branching and Greedy Search

• At time step *t*, the posterior branches into two configurations:

$$\begin{cases} s_t = 0 : & p(\mathbf{z}_t | s_t = 0, \mathbf{x}_{1:t}, s_{1:t-1}) \text{ weighted by } p(s_t = 0 | \mathbf{x}_{1:t}, s_{1:t-1}) \\ s_t = 1 : & p(\mathbf{z}_t | s_t = 1, \mathbf{x}_{1:t}, s_{1:t-1}) \text{ weighted by } p(s_t = 1 | \mathbf{x}_{1:t}, s_{1:t-1}) \end{cases}$$

$$s_{3} = 0$$

$$s_{3} = 1$$

$$s_{3} = 0$$

$$s_{3} = 1$$

$$s_{3} = 0$$

$$s_{3} = 1$$

$$s_{3} = 0$$

$$\cdots$$

$$s_{1} = 0$$

$$s_{2} = 0$$

$$s_{3} = 1$$

$$time t$$

• Exponential branching prevents feasible computation.

.

Exponential Branching and Greedy Search

• At time step *t*, the posterior branches into two configurations:

$$\begin{cases} s_t = 0 : & p(\boldsymbol{z}_t | s_t = 0, \boldsymbol{x}_{1:t}, s_{1:t-1}) \text{ weighted by } p(s_t = 0 | \boldsymbol{x}_{1:t}, s_{1:t-1}) \\ s_t = 1 : & p(\boldsymbol{z}_t | s_t = 1, \boldsymbol{x}_{1:t}, s_{1:t-1}) \text{ weighted by } p(s_t = 1 | \boldsymbol{x}_{1:t}, s_{1:t-1}) \end{cases}$$

Greedy Search

.

$$s_0 = 0
ightarrow egin{cases} s_1 = 0 \ s_1 = 1
ightarrow egin{cases} s_2 = 0
ightarrow egin{cases} s_3 = 0
ightarrow egin{cases} s_3 = 0
ightarrow egin{cases} s_4 = 0 \ s_4 = 1
ightarrow egin{cases} s_5 = 0 \ s_5 = 1
ightarrow \cdots egin{cases} s_5 = 1
ightarrow egin{cases} s_2 = 1
ightarrow egin{cases} s_2 = 1
ightarrow egin{cases} s_3 = 1
ightarrow egin{cases} s_4 = 0 \ s_4 = 1
ightarrow egin{cases} s_5 = 0 \ s_5 = 1
ightarrow \cdots egin{cases} s_5 = 1
ightarrow \cdots egin{cases} s_2 = 1
ightarrow egin{cases} s_3 = 1
ightarrow egin{cases} s_4 = 0 \ s_5 = 1
ightarrow \cdots egin{cases} s_5 = 0 \ s_5 = 1
ightarrow \cdots egin{cases} s_2 = 1
ightarrow egin{cases} s_2 = 1
ightarrow egin{cases} s_2 = 1
ightarrow egin{cases} s_2 = 0 \ s_5 = 1
ightarrow \cdots egin{cases} s_2 = 1
ightarrow egin{cases} s_2
ightarrow egin{cases} s_2$$

Beam Search

Beam Search

• Exact Beam Search for $s_{1:t}$ $p(s_{1:t}|\mathbf{x}_{1:t}) \propto p(s_t|\mathbf{x}_{1:t}, s_{1:t-1})p(s_{1:t-1}|\mathbf{x}_{1:t-1})$

where $p(s_t | x_{1:t}, s_{1:t-1}) = Bern(s_t; m)$ and

$$m = \sigma \left(\log \frac{p(\mathbf{x}_t | \mathbf{s}_t = 1, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\mathbf{x}_t | \mathbf{s}_t = 0, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})} + \xi_0 \right)$$

Beam Search

• Exact Beam Search for $s_{1:t}$ $p(s_{1:t}|\mathbf{x}_{1:t}) \propto p(s_t|\mathbf{x}_{1:t}, s_{1:t-1})p(s_{1:t-1}|\mathbf{x}_{1:t-1})$

where $p(s_t | x_{1:t}, s_{1:t-1}) = Bern(s_t; m)$ and

$$m = \sigma \left(\log \frac{p(\mathbf{x}_t | \mathbf{s}_t = 1, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})}{p(\mathbf{x}_t | \mathbf{s}_t = 0, \mathbf{s}_{1:t-1}, \mathbf{x}_{1:t-1})} + \xi_0 \right)$$

• Variational Beam Search for $s_{1:t}$ $p(s_{1:t}|\mathbf{x}_{1:t}) \propto q^*(s_t|s_{1:t-1})p(s_{1:t-1}|\mathbf{x}_{1:t-1})$

where $q^*(s_t|s_{1:t-1}) = \text{Bern}(s_t; m)$ and

$$m = \sigma\left(\log \underbrace{\frac{\exp \mathcal{L}(q^*(\boldsymbol{z}_t)|\boldsymbol{s}_t = 1, \boldsymbol{s}_{1:t-1})}{\exp \mathcal{L}(q^*(\boldsymbol{z}_t)|\boldsymbol{s}_t = 0, \boldsymbol{s}_{1:t-1})}}_{\approx p(\boldsymbol{x}_t|\boldsymbol{s}_t = 0, \boldsymbol{s}_{1:t-1}, \boldsymbol{x}_{1:t-1})} + \xi_0\right)$$

Beam Search: Example

Beam search can correct the decisions in hindsight:

Detect the changes in word meanings using dynamic word embeddings¹.

• an online version of word2vec²

¹Bamler and Mandt, Dynamic Word Embeddings, ICML 2017 ²Mikolov et al., Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013

Aodong Li (Department of Computer Science, UCI)

Adaptive Bayesian Online Learning

$$p(\mathbf{z}_t | \mathbf{s}_t; \tau_t) = \begin{cases} \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \sigma_{t-1}^2), & \mathbf{s}_t = 0\\ \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \beta^{-1} \sigma_{t-1}^2), & \mathbf{s}_t = 1 \end{cases}$$

$$p(\mathbf{z}_t | \mathbf{s}_t; \tau_t) = \begin{cases} \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \sigma_{t-1}^2), & \mathbf{s}_t = 0\\ \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \beta^{-1} \sigma_{t-1}^2), & \mathbf{s}_t = 1 \end{cases}$$

$$p(\mathbf{z}_t | \mathbf{s}_t; \tau_t) = \begin{cases} \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \sigma_{t-1}^2), & \mathbf{s}_t = 0\\ \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \beta^{-1} \sigma_{t-1}^2), & \mathbf{s}_t = 1 \end{cases}$$

$$p(\mathbf{z}_t | \mathbf{s}_t; \tau_t) = \begin{cases} \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \sigma_{t-1}^2), & \mathbf{s}_t = 0\\ \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \beta^{-1} \sigma_{t-1}^2), & \mathbf{s}_t = 1 \end{cases}$$

$$p(\mathbf{z}_t | \mathbf{s}_t; \tau_t) = \begin{cases} \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \sigma_{t-1}^2), & \mathbf{s}_t = 0\\ \mathcal{N}(\mathbf{z}_t; \mu_{t-1}, \beta^{-1} \sigma_{t-1}^2), & \mathbf{s}_t = 1 \end{cases}$$

Adapt to covariate shifts in supervised learning:

	Tab			Jillereni Dala	5015	
MODELS	CIFAR-10 (Accu	SVHN RACY)↑	Malwari	E SENSORDRIFT (MCAE 10 ^{–2})↓	Elec2	NBAPLAYER (LOGLIKE 10 ^{–2})↑
VBS (K=6)*	69.2±0.9	89.6±0.5	11.61	10.53	7.28	29.49±3.12
VBS (K=3)*	$68.9{\pm}0.9$	$89.1{\pm}0.5$	11.65	10.71	7.28	29.22±2.63
VBS (K=1)*	$68.2{\pm}0.8$	$88.9{\pm}0.5$	11.65	10.86	7.27	29.25±2.59
BOCD (K=6) [♯]	$65.6{\pm}0.8$	$88.2{\pm}0.5$	12.93	24.34	12.49	$22.96{\pm}7.42$
BOCD (K=3) [♯]	$67.3 {\pm} 0.8$	$88.8{\pm}0.5$	12.74	24.31	12.49	20.93 ± 7.83
BF¶	69.8±0.8	$89.9{\pm}0.5$	11.71	11.40	13.37	$24.17 {\pm} 2.29$
VCL [†]	$66.7{\pm}0.8$	$88.7{\pm}0.5$	13.27	24.90	16.59	$3.48{\pm}25.53$
LP [‡]	$62.6 {\pm} 1.0$	$82.8{\pm}0.9$	13.27	24.90	16.59	$3.48{\pm}25.53$
IB§	$63.7 {\pm} 0.5$	$85.5{\pm}0.7$	16.6	27.71	12.48	-44.87±16.88
IB§ (BAYES)	$64.5{\pm}0.3$	$87.8{\pm}0.1$	16.6	27.71	12.48	$-44.87{\pm}16.88$

Table: Evaluation of Different Datasets

* proposed, [#] [Adams and MacKay, 2007], [¶] [Kurle et al., 2020]

[†] [NGUYEN ET AL., 2018], [‡] [SMOLA ET AL., 2003], [§] INDEPENDENT BATCH

Table: Evaluation of Different Datasets							
Models	CIFAR-10 (Accu	SVHN RACY)↑	Malware (SensorDrift MCAE 10 ⁻²)↓	Elec2	NBAPLAYER (LOGLIKE 10 ^{–2})↑	
VBS (K=6)*	69.2±0.9	89.6±0.5	11.61	10.53	7.28	29.49±3.12	
VBS (K=3)*	$68.9{\pm}0.9$	$89.1{\pm}0.5$	11.65	10.71	7.28	29.22±2.63	
VBS (K=1)*	$68.2{\pm}0.8$	$88.9{\pm}0.5$	11.65	10.86	7.27	29.25±2.59	
BOCD (K=6) [♯]	$65.6{\pm}0.8$	$88.2{\pm}0.5$	12.93	24.34	12.49	$22.96{\pm}7.42$	
BOCD (K=3) [♯]	$67.3{\pm}0.8$	$88.8{\pm}0.5$	12.74	24.31	12.49	$20.93{\pm}7.83$	
BF¶	$69.8{\pm}0.8$	$\textbf{89.9}{\pm}\textbf{0.5}$	11.71	11.40	13.37	$24.17 {\pm} 2.29$	
VCL [†]	$66.7{\pm}0.8$	$88.7{\pm}0.5$	13.27	24.90	16.59	$3.48{\pm}25.53$	
LP [‡]	$62.6 {\pm} 1.0$	$82.8{\pm}0.9$	13.27	24.90	16.59	$3.48{\pm}25.53$	
IB§	$63.7{\pm}0.5$	$85.5{\pm}0.7$	16.6	27.71	12.48	-44.87 ± 16.88	
IB§ (BAYES)	$64.5{\pm}0.3$	$87.8{\pm}0.1$	16.6	27.71	12.48	$-44.87{\pm}16.88$	

Table F al alla C Different Dataset

* proposed, [#] [Adams and MacKay, 2007], [¶] [Kurle et al., 2020]

[†] [NGUYEN ET AL., 2018], [‡] [SMOLA ET AL., 2003], [§] INDEPENDENT BATCH

Table. Evaluation of Different Datasets						
MODELS	CIFAR-10 (Accu	SVHN RACY)↑	Malware	E SENSORDRIFT (MCAE 10 ^{–2})↓	Elec2	NBAPLAYER (LOGLIKE 10 ^{–2})↑
VBS (K=6)*	69.2±0.9	89.6±0.5	11.61	10.53	7.28	29.49±3.12
VBS (K=3)*	$68.9{\pm}0.9$	$89.1{\pm}0.5$	11.65	10.71	7.28	29.22±2.63
VBS (K=1)*	$68.2{\pm}0.8$	$88.9{\pm}0.5$	11.65	10.86	7.27	29.25±2.59
BOCD (K=6) [♯]	$65.6{\pm}0.8$	$88.2{\pm}0.5$	12.93	24.34	12.49	$22.96{\pm}7.42$
BOCD (K=3) [♯]	$67.3{\pm}0.8$	$88.8{\pm}0.5$	12.74	24.31	12.49	$20.93{\pm}7.83$
BF¶	69.8±0.8	$\textbf{89.9}{\pm}\textbf{0.5}$	11.71	11.40	13.37	$24.17 {\pm} 2.29$
VCL [†]	$66.7 {\pm} 0.8$	$88.7{\pm}0.5$	13.27	24.90	16.59	$3.48{\pm}25.53$
LP [‡]	$62.6 {\pm} 1.0$	$82.8{\pm}0.9$	13.27	24.90	16.59	$3.48{\pm}25.53$
IB§	$63.7 {\pm} 0.5$	$85.5{\pm}0.7$	16.6	27.71	12.48	-44.87 ± 16.88
IB§ (BAYES)	$64.5{\pm}0.3$	$87.8{\pm}0.1$	16.6	27.71	12.48	$-44.87{\pm}16.88$

Table: Evaluation of Different Datasets

* proposed, [#] [Adams and MacKay, 2007], [¶] [Kurle et al., 2020]

[†] [Nguyen et al., 2018], [‡] [Smola et al., 2003], [§] Independent Batch

MODELS	CIFAR-10 (Accu	SVHN RACY)↑	Malware	E SENSORDRIFT (MCAE 10 ^{–2})↓	Elec2	NBAPLAYER (LOGLIKE 10 ^{–2})↑
VBS (K=6)*	69.2±0.9	89.6±0.5	11.61	10.53	7.28	29.49±3.12
VBS (K=3)*	$68.9{\pm}0.9$	$89.1 {\pm} 0.5$	11.65	10.71	7.28	29.22±2.63
VBS (K=1)*	$68.2{\pm}0.8$	$88.9{\pm}0.5$	11.65	10.86	7.27	29.25±2.59
BOCD (K=6) [♯]	$65.6{\pm}0.8$	88.2±0.5	12.93	24.34	12.49	$22.96{\pm}7.42$
BOCD (K=3) [♯]	$67.3{\pm}0.8$	$88.8{\pm}0.5$	12.74	24.31	12.49	$20.93{\pm}7.83$
BF¶	69.8±0.8	89.9±0.5	11.71	11.40	13.37	24.17 ± 2.29
VCL [†]	$66.7{\pm}0.8$	$88.7{\pm}0.5$	13.27	24.90	16.59	$3.48{\pm}25.53$
LP [‡]	62.6±1.0	$82.8{\pm}0.9$	13.27	24.90	16.59	$3.48{\pm}25.53$
IB§	$63.7{\pm}0.5$	$85.5{\pm}0.7$	16.6	27.71	12.48	$-44.87 {\pm} 16.88$
IB [§] (BAYES)	$64.5{\pm}0.3$	$87.8{\pm}0.1$	16.6	27.71	12.48	$-44.87 {\pm} 16.88$

Table: Evaluation of Different Datasets

* proposed, [#] [Adams and MacKay, 2007], [¶] [Kurle et al., 2020]

[†] [Nguyen et al., 2018], [‡] [Smola et al., 2003], [§] Independent Batch

• We introduced a Bayesian inference algorithm for online learning in a non-stationary environment with irregular shifts.

- We introduced a Bayesian inference algorithm for online learning in a non-stationary environment with irregular shifts.
- Our approach simultaneously detect and adapt to shifts.

- We introduced a Bayesian inference algorithm for online learning in a non-stationary environment with irregular shifts.
- Our approach simultaneously detect and adapt to shifts.
- We introduced two schemes greedy search and beam search that trade expressiveness off against computation.

- We introduced a Bayesian inference algorithm for online learning in a non-stationary environment with irregular shifts.
- Our approach simultaneously detect and adapt to shifts.
- We introduced two schemes greedy search and beam search that trade expressiveness off against computation.
- Experiments show that our approach achieves lower error in supervised learning and compressive, interpretable latent structure in unsupervised learning.

References

- R Kulhavỳ and Martin B Zarrop. On a general concept of forgetting. *International Journal of Control*, 58(4):905–924, 1993.
- Richard Kurle, Botond Cseke, Alexej Klushyn, Patrick van der Smagt, and Stephan Günnemann. Continual learning with bayesian neural networks for non-stationary data. In *International Conference on Learning Representations*, 2020.
- Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.