
RLlib Flow
Distributed Reinforcement Learning is a Dataflow Problem

Eric Liang*, Zhanghao Wu*, Michael Luo, Sven Mika, Joseph E. Gonzalez, Ion Stoica

UC Berkeley, Anyscale

2 ©2021
RISELab

● Reinforcement learning can be defined in high-level update

equations.

● The implementation have remained quite low-level, i.e. at the

level of message passing.

Deep Reinforcement Learning

Figure credit to OpenAi Gym

3 ©2021
RISELab

Needs of RL Researchers

● RL practitioners are typically not system engineers

● RL algorithms should be customizable in various ways

Library Distribution Scheme Generality Programmability #Algo

RLGraph Pluggable General Purpose Low-level / Pluggable 10+

Deepmind Acme Actors + Reverb Async Actor-Learner Limited 10+
Intel Coach Actor + NFS Async Actor-Learner Limited 30+
RLlib Ray Actors General Purpose Flexible, but Low-level 20+

RLlib Flow Actor / Dataflow General Purpose Flexible and High-level 20+

4 ©2021
RISELab

 1 # launch gradients computation tasks

 2 pending_gradients = dict()

 3 for worker in remote_workers:

 4 worker.set_weights.remote(weights)

 5 future = worker.compute_gradients

 6 .remote(worker.sample.remote())

 7 pending_gradients[future] = worker

 8 # asynchronously gather gradients and apply

 9 while pending_gradients:

10 wait_results = ray.wait(

11 pending_gradients.keys(),

12 num_returns=1)

13 ready_list = wait_results[0]

14 future = ready_list[0]

15

16 gradient, info = ray.get(future)

17 worker = pending_gradients.pop(future)

18 # apply gradients

19 local_worker.apply_gradients(gradient)

20 weights = local_worker.get_weights()

21 worker.set_weights.remote(weights)

22 # launch gradient computation again

23 future = worker.compute_gradients

24 .remote(worker.sample.remote())

25 pending_gradients[future] = worker

RL Implementation Remains Low Level

Data Flow

Worker Management

Execution Logic

A3C Implementation in RLlib

5 ©2021
RISELab

 1 # launch gradients computation tasks

 2 pending_gradients = dict()

 3 for worker in remote_workers:

 4 worker.set_weights.remote(weights)

 5 future = worker.compute_gradients

 6 .remote(worker.sample.remote())

 7 pending_gradients[future] = worker

 8 # asynchronously gather gradients and apply

 9 while pending_gradients:

10 wait_results = ray.wait(

11 pending_gradients.keys(),

12 num_returns=1)

13 ready_list = wait_results[0]

14 future = ready_list[0]

15

16 gradient, info = ray.get(future)

17 worker = pending_gradients.pop(future)

18 # apply gradients

19 local_worker.apply_gradients(gradient)

20 weights = local_worker.get_weights()

21 worker.set_weights.remote(weights)

22 # launch gradient computation again

23 future = worker.compute_gradients

24 .remote(worker.sample.remote())

25 pending_gradients[future] = worker

RL Implementation Remains Low Level

Data Flow

Worker Management

Execution Logic

A3C Implementation in RLlib

6 ©2021
RISELab

 1 # launch gradients computation tasks

 2 pending_gradients = dict()

 3 for worker in remote_workers:

 4 worker.set_weights.remote(weights)

 5 future = worker.compute_gradients

 6 .remote(worker.sample.remote())

 7 pending_gradients[future] = worker

 8 # asynchronously gather gradients and apply

 9 while pending_gradients:

10 wait_results = ray.wait(

11 pending_gradients.keys(),

12 num_returns=1)

13 ready_list = wait_results[0]

14 future = ready_list[0]

15

16 gradient, info = ray.get(future)

17 worker = pending_gradients.pop(future)

18 # apply gradients

19 local_worker.apply_gradients(gradient)

20 weights = local_worker.get_weights()

21 worker.set_weights.remote(weights)

22 # launch gradient computation again

23 future = worker.compute_gradients

24 .remote(worker.sample.remote())

25 pending_gradients[future] = worker

RL Implementation Remains Low Level

Data Flow

Worker Management

Execution Logic

A3C Implementation in RLlib

7 ©2021
RISELab

 1 # launch gradients computation tasks

 2 pending_gradients = dict()

 3 for worker in remote_workers:

 4 worker.set_weights.remote(weights)

 5 future = worker.compute_gradients

 6 .remote(worker.sample.remote())

 7 pending_gradients[future] = worker

 8 # asynchronously gather gradients and apply

 9 while pending_gradients:

10 wait_results = ray.wait(

11 pending_gradients.keys(),

12 num_returns=1)

13 ready_list = wait_results[0]

14 future = ready_list[0]

15

16 gradient, info = ray.get(future)

17 worker = pending_gradients.pop(future)

18 # apply gradients

19 local_worker.apply_gradients(gradient)

20 weights = local_worker.get_weights()

21 worker.set_weights.remote(weights)

22 # launch gradient computation again

23 future = worker.compute_gradients

24 .remote(worker.sample.remote())

25 pending_gradients[future] = worker

RL Implementation Remains Low Level

Data Flow

Worker Management

Execution Logic

A3C Implementation in RLlib

Hard to read, customize and optimize

8 ©2021
RISELab

Complex Algorithms for RL

● Complex algorithms possible but require low-level code

○ Ape-X: 250 lines of Python

○ IMPALA: 694 lines of Python

How can we reduce the lines of code required to define a new

distributed algorithm?

9 ©2021
RISELab

Multi-Agent Use Cases

● From the systems perspective, multi-agent training often does

not impact distributed execution

● Exceptions:

○ Training agents different optimization frequencies

○ Training agents with different distributed algorithms

How can we support composing existing RL algorithms without

requiring a rewrite?

10 ©2021
RISELab

Reinforcement Learning Basics

● RL is more like data analytics than supervised learning.

● We can view RL training as dataflow

11 ©2021
RISELab

Dataflow of Synchronous Training Loop

Compute
Gradients

Apply
Gradients Report Metrics

Update Weights

Parallel Rollouts Compute
Gradients

● Bulk synchronous algorithms like A2C, PPO.

12 ©2021
RISELab

Dataflow of Asynchronous Training

Compute
Gradients

Apply
Gradients Report Metrics

Update Weights

Parallel Rollouts Compute
Gradients

● Small change for async optimization (A3C)

Remove Sync Barrier

13 ©2021
RISELab

Dataflow of Distributed Prioritized DQN

● Mixed async dataflow (Ape-X), with fine-grained updates

14 ©2021
RISELab

(a) Creation & Message Passing

Dataflow Operators for RL

15 ©2021
RISELab

Dataflow Operators for RL

(b) Transformation

16 ©2021
RISELab

Dataflow Operators for RL

(c) Sequencing

17 ©2021
RISELab

(d) Concurrency

A Dataflow Programming Model for Distributed RL

18 ©2021
RISELab

A Dataflow Programming Model for Distributed RL

(a) Creation & Message Passing (b) Transformation

(c) Sequencing (d) Concurrency

19 ©2021
RISELab

Implementation over Distributed Actor Framework

● Two separate modules: A general purpose parallel iterator

library; a collection of RL specific dataflow operators

20 ©2021
RISELab

Evaluation: Revisiting A3C

Compute
Gradients

Apply
Gradients Report Metrics

Update Weights

Parallel Rollouts Compute
Gradients

(b) Transformation
(Parallel Apply)

(c) Sequencing
(Async Gather) (b) Transformation

(Sequential Apply)

(a) Creation
(From Actor)

(a) Message Passing
(Send Message)

21 ©2021
RISELab

Evaluation: A3C Comparison

 1 # type: List[RolloutActor]

 2 workers = create_rollout_workers()

 3 # type: Iter[Gradients]

 4 grads = ParallelRollouts(workers)

 5 .par_for_each(ComputeGradients())

 6 .gather_async()

 7 # type: Iter[TrainStats]

 8 apply_op = grads

 9 .for_each(ApplyGradients(workers))

10 # type: Iter[Metrics]

11 return ReportMetrics(apply_op, workers)

 1 # launch gradients computation tasks

 2 pending_gradients = dict()

 3 for worker in remote_workers:

 4 worker.set_weights.remote(weights)

 5 future = worker.compute_gradients

 6 .remote(worker.sample.remote())

 7 pending_gradients[future] = worker

 8 # asynchronously gather gradients and apply

 9 while pending_gradients:

10 wait_results = ray.wait(

11 pending_gradients.keys(),

12 num_returns=1)

13 ready_list = wait_results[0]

14 future = ready_list[0]

15

16 gradient, info = ray.get(future)

17 worker = pending_gradients.pop(future)

18 # apply gradients

19 local_worker.apply_gradients(gradient)

20 weights = local_worker.get_weights()

21 worker.set_weights.remote(weights)

22 # launch gradient computation again

23 future = worker.compute_gradients

24 .remote(worker.sample.remote())

25 pending_gradients[future] = worker

A3C Implementation in RLlib Flow A3C Implementation in Previous RLlib

Compute
Gradients

Apply
Gradients

Report
Metrics

Update Weights

Parallel
Rollouts

Compute
Gradients

22 ©2021
RISELab

Evaluation: Revisiting Ape-X
(c) Sequencing
(Async Gather)

(b) Transformation
(Sequential Apply)

(a) Creation
(From Actor)

(a) Message Passing
(Send Message)

(d) Concurrency
(Asnyc Union)

23 ©2021
RISELab

Evaluation: Readability (Ape-X)
 1 workers = create_rollout_workers()

 2 replay_buffer = create_replay_actors()

 3 rollouts = ParallelRollouts(workers).gather_async()

 4

 5 store_op = rollouts

 6 .for_each(StoreToBuffer(replay_buffer))

 7 .for_each(UpdateWeights(workers))

 8

 9 replay_op = ParallelReplay(replay_buffer)

10 .gather_async()

11 .for_each(UpdatePriorities(workers))

12 .for_each(TrainOneStep(workers))

13

14 return ReportMetrics(

15 Union(store_op, replay_op), workers)

24 ©2021
RISELab

Evaluation: Readability (Ape-X)

● Previous implementation:

25 ©2021
RISELab

Evaluation: Composing Multiple Workflows

(d) Concurrency
(Duplicate)

(d) Concurrency
(Union)

(d) Concurrency
(Asnyc Union)

DQN Sub-Flow

PPO Sub-Flow

26 ©2021
RISELab

Evaluation: Multi-Agent Training

 1 # type: List[RolloutActor]

 2 workers = create_rollout_workers()

 3 # type: Iter[Rollout], Iter[Rollout]

 4 r1, r2 = ParallelRollouts(workers).split()

 5 # type: Iter[TrainStats], Iter[TrainStats]

 6 ppo_op = ppo_plan(

 7 Select(r1, policy="PPO"), workers)

 8 dqn_op = dqn_plan(

 9 Select(r2, policy="DQN"), workers)

10 # type: Iter[Metrics]

11 return ReportMetrics(

12 Union(ppo_op, dqn_op), workers)

DQN Sub-Flow

PPO Sub-Flow

27 ©2021
RISELab

Evaluation: Readability

● Lines of code saved for RLlib algorithms

28 ©2021
RISELab

Performance against RLlib

(a) Sample efficiency on CartPole (Dummy) (b) Training throughput on Atari (IMPALA)

● The abstraction of RLlib Flow does not introduce overhead

29 ©2021
RISELab

Reinforcement Learning vs Data Streaming

Compute
Gradients

Apply
Gradients Report Metrics

Update Weights

Parallel Rollouts Compute
Gradients

(1) (2) (3) (4)

● Asynchronous Dependencies (pink): no deterministic ordering

● Message Passing (pink dotted): update upstream operator state

● Consistency and Durability: less strict requirements

30 ©2021
RISELab

Performance against Spark Streaming

● Lower-overhead than streaming frameworks -- take advantage

of RL requirements vs. data processing

RLlib Flow
Distributed Reinforcement Learning is a Dataflow Problem

Correspondence to:
Eric Liang<ericliang@berkeley.edu>,
Ion Stoica<istoica@berkeley.edu>

RLlib Flow Operators:
1. Creation & Message Passing
2. Transformation
3. Sequencing
4. Concurrency

DQN Sub-Flow

PPO Sub-Flow

Apply
Gradients

Report
Metrics

Update Weights

Parallel
Rollouts

Compute
Gradients

Architecture of RLlib Flow

Dataflow of A3C

Dataflow of Ape-X Dataflow of Multi-Agent

Lines of Code

Benchmark

Comparison to Spark

