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Motivation

I Hessian plays a crucial role in applied math, optimization, statistics, and machine learning (ML)

I for involved ML models (e.g., neural networks), characterization of Hessian often under strong
simplifying assumptions, e.g., “mixed” behavior of Marc̆enko-Pastur and semicircle laws

In this work:

I focus on a large family extends generalized linear model: yi ∼ f (y | wT
∗ xi), convex or non-convex

I precise characterization of Hessian eigenvalue distribution and (possible) isolated
eigenvalue-eigenvector pairs via Random Matrix Theory (RMT)

I qualitatively different Hessian behavior depending on the response model, loss, and feature statistics
I application: spectral initialization using top Hessian eigenvectors in non-convex models
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System model

For input feature x1, . . . , xn ∈ Rp and response model yi ∼ f (y | wT
∗ xi), minimizing the empirical risk

min
w

L(w) = min
w

1
n

n

∑
i=1

`(yi, wTxi) (1)

for some loss `(y, h) : R×R→ R,

associated Hessian

H =
1
n

n

∑
i=1

`′′(yi, wTxi)xix
T
i ≡

1
n

XDXT, D = diag{`′′(yi, wTxi)}n
i=1, X = [x1, . . . , xn] ∈ Rp×n (2)

(related to separable covariance model in RMT, but with D dependent on X!)

High dimensional asymptotics

As n, p→ ∞ with p/n→ c ∈ (0, ∞), we have
1 max{‖w‖, ‖w∗‖} = O(1)

2 xi
i.i.d.∼ N (µ, C) with max{‖µ‖, ‖C‖} = O(1)
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(Limiting) Hessian eigenvalue distribution

Theorem (Limiting spectral measure)

As n, p→ ∞, the empirical Hessian eigenvalue distribution µH converges weakly and almost surely to a probability
measure µ, defined through its Stieltjes transform m(z) =

∫
(t− z)−1µ(dt) as the unique solution to

m(z) =
∫ (
− z + t̃

∫ t
1 + tδ(z)

ν(dt)
)−1

ν̃(dt̃), δ(z) =
∫ ct̃
−z + t̃

∫ t
1+tδ(z) ν(dt)

ν̃(dt̃). (3)

for ν the law/distribution of g with

g ≡ ∂2`(y, h)/∂h2, h = wTx ∼ N (wTµ, wTCw), (4)

and ν̃ the (limiting) eigenvalue distribution of C.

Looks complicated but

I capture the interplay between loss function (via ν), feature statistics (via ν̃) and dimensionality c = p/n
I can be (analytically) evaluated with ease and lead to qualitatively different Hessian behavior
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Hessian eigenvalue distribution: implications
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I impact of loss function: bounded (a)

versus unbounded (b) Hessian eigenvalues
− Hessian has unbounded eigen-support if and only if g ≡ ∂2`(y, h)/∂h2 for h ∼ N (wTµ, wTCw) is bounded
X logistic model with logistic loss
x logistic model with exponential loss
x phase retrieval model with square loss

I impact of feature covariance C: Hessian spectra of single- (c) versus multi-bulk (d)
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Marc̆enko-Pastur-shaped Hessian?

Yes but only visually in some cases!
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(b) Exponential loss

Hessian eigenvalues (empirical in blue, theory in red) versus rescaled and shifted Marc̆enko-Pastur (green):

(a) Marc̆enko-Pastur-like Hessian with logistic loss

(b) an example of non-Marc̆enko-Pastur-like Hessian with exponential loss

⇒ this “visual approximation” with Marc̆enko-Pastur law is not robust!
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Isolated eigenvalue-eigenvectors pairs and their phase transitions

I spike due to feature signal on the right-hand side: classical BBP phase transition in RMT
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I spike due to model on the left- or right-hand side: novel phase transition!
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0Jinho Baik, Gérard Ben Arous, and Sandrine Péché. “Phase transition of the largest eigenvalue for nonnull complex sample covariance
matrices”. In: The Annals of Probability 33.5 (2005), pp. 1643–1697
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0Jinho Baik, Gérard Ben Arous, and Sandrine Péché. “Phase transition of the largest eigenvalue for nonnull complex sample covariance
matrices”. In: The Annals of Probability 33.5 (2005), pp. 1643–1697
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Conclusion and take-away message

I Hessian eigenspectra in generally do NOT take a Marc̆enko-Pastur form, even for simple GLMs!

I very different behavior for this simple model: bounded versus unbounded support, single- versus
multi-bulk, different phase transitions, etc.

Check our paper

https://arxiv.org/abs/2103.01519

and my homepage https://zhenyu-liao.github.io/ for more information!

Thank you!
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