Hessian Eigenspectra of More Realistic Nonlinear Models

Zhenyu Liao, Michael W. Mahoney

EIC, Huazhong University of Science and Technology, China and ICSI and Department of Statistics, University of California, Berkeley, USA

Berkelev UNIVERSITY OF CALIFORNIA

Hessian plays a crucial role in applied math, optimization, statistics, and machine learning (ML)

- ▶ Hessian plays a crucial role in applied math, optimization, statistics, and machine learning (ML)
- for involved ML models (e.g., neural networks), characterization of Hessian often under strong simplifying assumptions, e.g., "mixed" behavior of Marčenko-Pastur and semicircle laws

- Hessian plays a crucial role in applied math, optimization, statistics, and machine learning (ML)
- for involved ML models (e.g., neural networks), characterization of Hessian often under strong simplifying assumptions, e.g., "mixed" behavior of Marčenko-Pastur and semicircle laws

In this work:

b focus on a large family extends generalized linear model: $y_i \sim f(y \mid \mathbf{w}_*^\mathsf{T} \mathbf{x}_i)$, convex or non-convex

- Hessian plays a crucial role in applied math, optimization, statistics, and machine learning (ML)
- for involved ML models (e.g., neural networks), characterization of Hessian often under strong simplifying assumptions, e.g., "mixed" behavior of Marčenko-Pastur and semicircle laws

In this work:

- focus on a large family extends generalized linear model: $y_i \sim f(y \mid \mathbf{w}_*^{\mathsf{T}} \mathbf{x}_i)$, convex or non-convex
- precise characterization of Hessian eigenvalue distribution and (possible) isolated eigenvalue-eigenvector pairs via Random Matrix Theory (RMT)

- ▶ Hessian plays a crucial role in applied math, optimization, statistics, and machine learning (ML)
- for involved ML models (e.g., neural networks), characterization of Hessian often under strong simplifying assumptions, e.g., "mixed" behavior of Marčenko-Pastur and semicircle laws

In this work:

- focus on a large family extends generalized linear model: $y_i \sim f(y \mid \mathbf{w}_*^\mathsf{T} \mathbf{x}_i)$, convex or non-convex
- precise characterization of Hessian eigenvalue distribution and (possible) isolated eigenvalue-eigenvector pairs via Random Matrix Theory (RMT)
- > qualitatively different Hessian behavior depending on the response model, loss, and feature statistics

- ▶ Hessian plays a crucial role in applied math, optimization, statistics, and machine learning (ML)
- for involved ML models (e.g., neural networks), characterization of Hessian often under strong simplifying assumptions, e.g., "mixed" behavior of Marčenko-Pastur and semicircle laws

In this work:

- focus on a large family extends generalized linear model: $y_i \sim f(y \mid \mathbf{w}_*^{\mathsf{T}} \mathbf{x}_i)$, convex or non-convex
- precise characterization of Hessian eigenvalue distribution and (possible) isolated eigenvalue-eigenvector pairs via Random Matrix Theory (RMT)
- > qualitatively different Hessian behavior depending on the response model, loss, and feature statistics
- > application: spectral initialization using top Hessian eigenvectors in non-convex models

For input feature $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ and response model $y_i \sim f(y \mid \mathbf{w}_*^\mathsf{T} \mathbf{x}_i)$, minimizing the empirical risk

$$\min_{\mathbf{w}} L(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$$
(1)

for some loss $\ell(y,h) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

For input feature $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ and response model $y_i \sim f(y \mid \mathbf{w}_*^\mathsf{T} \mathbf{x}_i)$, minimizing the empirical risk

$$\min_{\mathbf{w}} L(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$$
(1)

for some loss $\ell(y,h) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, associated Hessian

$$\mathbf{H} = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} \equiv \frac{1}{n} \mathbf{X} \mathbf{D} \mathbf{X}^{\mathsf{T}}, \quad \mathbf{D} = \operatorname{diag} \{ \ell''(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \}_{i=1}^{n}, \quad \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$
(2)

For input feature $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ and response model $y_i \sim f(y \mid \mathbf{w}_*^\mathsf{T} \mathbf{x}_i)$, minimizing the empirical risk

$$\min_{\mathbf{w}} L(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$$
(1)

for some loss $\ell(y,h) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, associated Hessian

$$\mathbf{H} = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} \equiv \frac{1}{n} \mathbf{X} \mathbf{D} \mathbf{X}^{\mathsf{T}}, \quad \mathbf{D} = \operatorname{diag} \{ \ell''(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \}_{i=1}^{n}, \quad \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$
(2)

(related to separable covariance model in RMT, but with **D** dependent on X!)

For input feature $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ and response model $y_i \sim f(y \mid \mathbf{w}_*^\mathsf{T} \mathbf{x}_i)$, minimizing the empirical risk

$$\min_{\mathbf{w}} L(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)$$
(1)

for some loss $\ell(y,h) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, associated Hessian

$$\mathbf{H} = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} \equiv \frac{1}{n} \mathbf{X} \mathbf{D} \mathbf{X}^{\mathsf{T}}, \quad \mathbf{D} = \text{diag} \{ \ell''(y_i, \mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \}_{i=1}^{n}, \quad \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$
(2)

(related to separable covariance model in RMT, but with D dependent on X!)

High dimensional asymptotics

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, we have

4 max{
$$||w||, ||w_*||$$
} = $O(1)$

2
$$\mathbf{x}_i \stackrel{i.i.d.}{\sim} \mathcal{N}(\boldsymbol{\mu}, \mathbf{C})$$
 with max{ $\|\boldsymbol{\mu}\|, \|\mathbf{C}\|$ } = $O(1)$

As $n, p \to \infty$, the empirical Hessian eigenvalue distribution $\mu_{\mathbf{H}}$ converges weakly and almost surely to a probability measure μ , defined through its Stieltjes transform $m(z) = \int (t-z)^{-1} \mu(dt)$ as the unique solution to

$$m(z) = \int \left(-z + \tilde{t} \int \frac{t}{1 + t\delta(z)} \nu(dt) \right)^{-1} \tilde{\nu}(d\tilde{t}), \quad \delta(z) = \int \frac{c\tilde{t}}{-z + \tilde{t} \int \frac{t}{1 + t\delta(z)} \nu(dt)} \tilde{\nu}(d\tilde{t}).$$
(3)

for v the law/distribution of g with

$$g \equiv \partial^2 \ell(y, h) / \partial h^2, \quad h = \mathbf{w}^{\mathsf{T}} \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\mathsf{T}} \boldsymbol{\mu}, \mathbf{w}^{\mathsf{T}} \mathbf{C} \mathbf{w}), \tag{4}$$

and \tilde{v} the (limiting) eigenvalue distribution of **C**.

As $n, p \to \infty$, the empirical Hessian eigenvalue distribution $\mu_{\mathbf{H}}$ converges weakly and almost surely to a probability measure μ , defined through its Stieltjes transform $m(z) = \int (t-z)^{-1} \mu(dt)$ as the unique solution to

$$m(z) = \int \left(-z + \tilde{t} \int \frac{t}{1 + t\delta(z)} \nu(dt) \right)^{-1} \tilde{\nu}(d\tilde{t}), \quad \delta(z) = \int \frac{c\tilde{t}}{-z + \tilde{t} \int \frac{t}{1 + t\delta(z)} \nu(dt)} \tilde{\nu}(d\tilde{t}).$$
(3)

for v the law/distribution of g with

$$g \equiv \partial^2 \ell(y, h) / \partial h^2, \quad h = \mathbf{w}^{\mathsf{T}} \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\mathsf{T}} \boldsymbol{\mu}, \mathbf{w}^{\mathsf{T}} \mathbf{C} \mathbf{w}), \tag{4}$$

and \tilde{v} the (limiting) eigenvalue distribution of **C**.

Looks complicated but

As $n, p \to \infty$, the empirical Hessian eigenvalue distribution $\mu_{\mathbf{H}}$ converges weakly and almost surely to a probability measure μ , defined through its Stieltjes transform $m(z) = \int (t-z)^{-1} \mu(dt)$ as the unique solution to

$$m(z) = \int \left(-z + \tilde{t} \int \frac{t}{1 + t\delta(z)} \nu(dt) \right)^{-1} \tilde{\nu}(d\tilde{t}), \quad \delta(z) = \int \frac{c\tilde{t}}{-z + \tilde{t} \int \frac{t}{1 + t\delta(z)} \nu(dt)} \tilde{\nu}(d\tilde{t}).$$
(3)

for v the law/distribution of g with

$$g \equiv \partial^2 \ell(y, h) / \partial h^2, \quad h = \mathbf{w}^{\mathsf{T}} \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\mathsf{T}} \boldsymbol{\mu}, \mathbf{w}^{\mathsf{T}} \mathbf{C} \mathbf{w}), \tag{4}$$

and \tilde{v} the (limiting) eigenvalue distribution of **C**.

Looks complicated but

• capture the interplay between loss function (via ν), feature statistics (via $\tilde{\nu}$) and dimensionality c = p/n

As $n, p \to \infty$, the empirical Hessian eigenvalue distribution $\mu_{\mathbf{H}}$ converges weakly and almost surely to a probability measure μ , defined through its Stieltjes transform $m(z) = \int (t-z)^{-1} \mu(dt)$ as the unique solution to

$$m(z) = \int \left(-z + \tilde{t} \int \frac{t}{1 + t\delta(z)} \nu(dt) \right)^{-1} \tilde{\nu}(d\tilde{t}), \quad \delta(z) = \int \frac{c\tilde{t}}{-z + \tilde{t} \int \frac{t}{1 + t\delta(z)} \nu(dt)} \tilde{\nu}(d\tilde{t}).$$
(3)

for v the law/distribution of g with

$$g \equiv \partial^2 \ell(y, h) / \partial h^2, \quad h = \mathbf{w}^{\mathsf{T}} \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\mathsf{T}} \boldsymbol{\mu}, \mathbf{w}^{\mathsf{T}} \mathbf{C} \mathbf{w}), \tag{4}$$

and \tilde{v} the (limiting) eigenvalue distribution of **C**.

Looks complicated but

- capture the interplay between loss function (via v), feature statistics (via \tilde{v}) and dimensionality c = p/n
- can be (analytically) evaluated with ease and lead to qualitatively different Hessian behavior

impact of loss function: bounded (**a**)

impact of loss function: bounded (**a**) versus unbounded (**b**) Hessian eigenvalues

- Hessian has unbounded eigen-support if and only if $g \equiv \partial^2 \ell(y,h) / \partial h^2$ for $h \sim \mathcal{N}(\mathbf{w}^T \boldsymbol{\mu}, \mathbf{w}^T \mathbf{C} \mathbf{w})$ is bounded

- Hessian has unbounded eigen-support if and only if $g \equiv \partial^2 \ell(y,h) / \partial h^2$ for $h \sim \mathcal{N}(\mathbf{w}^T \mu, \mathbf{w}^T \mathbf{C} \mathbf{w})$ is bounded
- ✓ logistic model with logistic loss

- Hessian has unbounded eigen-support if and only if $g \equiv \partial^2 \ell(y,h) / \partial h^2$ for $h \sim \mathcal{N}(\mathbf{w}^T \mu, \mathbf{w}^T \mathbf{C} \mathbf{w})$ is bounded
- ✓ logistic model with logistic loss
- x logistic model with exponential loss

- Hessian has unbounded eigen-support if and only if $g \equiv \partial^2 \ell(y,h) / \partial h^2$ for $h \sim \mathcal{N}(\mathbf{w}^T \mu, \mathbf{w}^T \mathbf{C} \mathbf{w})$ is bounded
- ✓ logistic model with logistic loss
- x logistic model with exponential loss
- x phase retrieval model with square loss

impact of loss function: bounded (**a**) versus unbounded (**b**) Hessian eigenvalues

- Hessian has unbounded eigen-support if and only if $g \equiv \partial^2 \ell(y, h) / \partial h^2$ for $h \sim \mathcal{N}(\mathbf{w}^T \mu, \mathbf{w}^T \mathbf{C} \mathbf{w})$ is bounded
- ✓ logistic model with logistic loss
- x logistic model with exponential loss
- x phase retrieval model with square loss

▶ impact of feature covariance C: Hessian spectra of single- (c) versus multi-bulk (d)

Marčenko-Pastur-shaped Hessian?

Hessian eigenvalues (empirical in **blue**, theory in **red**) versus rescaled and shifted Marčenko-Pastur (green):

(a) Marčenko-Pastur-like Hessian with logistic loss

Marčenko-Pastur-shaped Hessian?

Hessian eigenvalues (empirical in blue, theory in red) versus rescaled and shifted Marčenko-Pastur (green):

- (a) Marčenko-Pastur-like Hessian with logistic loss
- (b) an example of non-Marčenko-Pastur-like Hessian with exponential loss

Marčenko-Pastur-shaped Hessian?

Hessian eigenvalues (empirical in blue, theory in red) versus rescaled and shifted Marčenko-Pastur (green):

- (a) Marčenko-Pastur-like Hessian with logistic loss
- (b) an example of non-Marčenko-Pastur-like Hessian with exponential loss
- \Rightarrow this "visual approximation" with Marčenko-Pastur law is not robust!

Marčenko-Pastur-shaped Hessian? Yes but only visually in some cases!

Hessian eigenvalues (empirical in blue, theory in red) versus rescaled and shifted Marčenko-Pastur (green):

- (a) Marčenko-Pastur-like Hessian with logistic loss
- (b) an example of non-Marčenko-Pastur-like Hessian with exponential loss
- \Rightarrow this "visual approximation" with Marčenko-Pastur law is not robust!

Isolated eigenvalue-eigenvectors pairs and their phase transitions

> spike due to feature signal on the right-hand side: classical BBP phase transition in RMT

⁰Jinho Baik, Gérard Ben Arous, and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: *The Annals of Probability* 33.5 (2005), pp. 1643–1697

Isolated eigenvalue-eigenvectors pairs and their phase transitions

> spike due to feature signal on the right-hand side: classical BBP phase transition in RMT

spike due to model on the left- or right-hand side: novel phase transition!

⁰Jinho Baik, Gérard Ben Arous, and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: *The Annals of Probability* 33.5 (2005), pp. 1643–1697

Z. Liao, Michael W. Mahoney (HUST and UC Berkeley)

Hessian Eigenspectra of More Realistic Nonlinear Models

Hessian eigenspectra in generally do **NOT** take a Marčenko-Pastur form, even for simple GLMs!

- Hessian eigenspectra in generally do NOT take a Marčenko-Pastur form, even for simple GLMs!
- very different behavior for this simple model: bounded versus unbounded support, single- versus multi-bulk, different phase transitions, etc.

Hessian eigenspectra in generally do NOT take a Marčenko-Pastur form, even for simple GLMs!

very different behavior for this simple model: bounded versus unbounded support, single- versus multi-bulk, different phase transitions, etc.

Check our paper

https://arxiv.org/abs/2103.01519

and my homepage https://zhenyu-liao.github.io/ for more information!

Hessian eigenspectra in generally do NOT take a Marčenko-Pastur form, even for simple GLMs!

very different behavior for this simple model: bounded versus unbounded support, single- versus multi-bulk, different phase transitions, etc.

Check our paper

https://arxiv.org/abs/2103.01519

and my homepage https://zhenyu-liao.github.io/ for more information!

Thank you!