

Fast Abductive Learning by Similarity-based Consistency Optimization

Yu-Xuan Huang, Wang-Zhou Dai, Le-Wen Cai, Stephen Muggleton, Yuan Jiang

Introduction

Integration of machine learning and logical reasoning

- 1. End-to-end models
 - Approximate logical calculus with differentiable functions
 - Demand a large number of labeled data
- 2. Hybrid modeling of dual systems
 - Abductive Learning (ABL)

Abductive Learning -- Inference

Automobile:1 Plane:2 Dog:9

Abductive Learning -- Learning

• Leverage full-featured logical reasoning to reduce the requirement for labeled data

 Abduction (Abductive reasoning): a basic form of logical inference that seeks the most likely explanation for observations based on background knowledge

• A non-deterministic process that may have **multiple answers**

Consistency measure

• Good measure:

Similarity-based Consistency Measure

Similarity-based Consistency Measure

- Idea:
 - Samples in the **same** category are **similar** in feature space
 - Samples of **different** classes are **dissimilar**

Consistency Optimization Problem

- Given the input data x, final output y, candidate labels set A
- Problem formalization

 $\max_{\bar{\boldsymbol{z}} \in \mathbb{A}} \quad \text{SimilarityScore}(\boldsymbol{x}, \bar{\boldsymbol{z}})$

• Consistency

SimilarityScore
$$(x, \bar{z}) = \frac{1}{|x|} \sum_{x_i \in x} (\text{InterclassDis}(x_i, \bar{z}) - \text{IntraclassDis}(x_i, \bar{z}))$$

InterclassDis
$$(x_i, \bar{z}) = \frac{1}{|\mathbb{D}_{i,\bar{z}}|} \sum_{\substack{x_j \in \mathbb{D}_{i,\bar{z}} \\ x_j \in \mathbb{D}_{i,\bar{z}}}} \frac{\text{Dis}(x_i, x_j),}{|\mathbb{S}_{i,\bar{z}}|}$$

IntraclassDis $(x_i, \bar{z}) = \frac{1}{|\mathbb{S}_{i,\bar{z}}|} \sum_{\substack{x_i \in \mathbb{S}_{i,\bar{z}}}} \frac{\text{Dis}(x_i, x_j),}{|\mathbb{S}_{i,\bar{z}}|}$

the set of instances whose labels are *different* from x_i 's

the set of instances whose labels are the *same* as x_i 's

Similarity

Final
problem
$$\max_{\bar{\boldsymbol{z}} \in \mathbb{A}} \quad \frac{1}{|\boldsymbol{x}|} \sum_{x_i \in \boldsymbol{x}} \left(\frac{1}{|\mathbb{D}_{i,\bar{\boldsymbol{z}}}|} \sum_{x_j \in \mathbb{D}_{i,\bar{\boldsymbol{z}}}} \operatorname{Dis}(x_i, x_j) - \frac{1}{|\mathbb{S}_{i,\boldsymbol{z}}|} \sum_{x_j \in \mathbb{S}_{i,\bar{\boldsymbol{z}}}} \operatorname{Dis}(x_i, x_j) \right).$$

• The higher the similarity, the smaller the distance

$$Dis(x_i, x_j) = Distance(\phi(x_i), \phi(x_j))$$

- ϕ is the feature map function: e.g., neural network for images or normalization function for tabular data
- We can obtain ϕ by unsupervised learning, or use perception classifier's embedding layer

Abductive Learning with Similarity (ABLSim)

Borrow more samples

- It could be challenging to calculate the intra-class distance due to limited instances
- We borrow some more samples to conduct the abductive reasoning

Borrow more samples

• The abduction problem

$$\begin{array}{ll} \max & \operatorname{Score}(\boldsymbol{X}, \boldsymbol{\bar{Z}}), \\ s.t. & \boldsymbol{X} = (\boldsymbol{x}^{\langle 1 \rangle}, \boldsymbol{x}^{\langle 2 \rangle}, \cdots, \boldsymbol{x}^{\langle m \rangle}), \\ & \boldsymbol{\bar{Z}} \in \mathbb{A}^{\langle 1 \rangle} \times \mathbb{A}^{\langle 2 \rangle} \times \cdots \times \mathbb{A}^{\langle m \rangle}, \\ & \mathbb{A}^{\langle k \rangle} = \{ \boldsymbol{\bar{z}} \mid KB \cup \boldsymbol{\bar{z}} \models y^{\langle k \rangle} \}. \end{array}$$

- Combinatorial optimization problem where the search space of grows exponentially with *m*
- ABLSim uses **beam search** to solve this optimization problem greedily

Beam Search (Example)

• Beam width b = 2

Beam Search (Algorithm)

Algorithm 1 ABLSim Learning **Input:** Unlabeled data $X = (x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, \dots, x^{\langle m \rangle})$; Final output $y = (y^{\langle 1 \rangle}, y^{\langle 2 \rangle}, \dots, y^{\langle m \rangle})$; Current model f; Knowledge base KB; Beam width b**Output:** Model f 1: for t = 1 to T do 2: $\mathbb{A} \leftarrow []$ # the candidate labels for k = 1 to m do 3: $z^{\langle k \rangle} \leftarrow f(x^{\langle k \rangle})$ # generate pseudo-labels 4: $\mathbb{A}^{\langle k \rangle} \leftarrow \text{Abduce}(KB, \boldsymbol{z}^{\langle k \rangle}, y^{\langle k \rangle})$ # abduce all consistent revised pseudo-labels 5: $\mathbb{A} \leftarrow \mathbb{A} \times \mathbb{A}^{\langle k \rangle}$ # Cartesian product 6: $x \leftarrow X[1:k]$ 7: $score \leftarrow []$ # the score of each candidate labels 8: 9: for $ar{m{z}}\in\mathbb{A}$ do $score.append(Score(x, \bar{z}))$ # get the score of candidate labels according to Eq. (12) 10: end for 11: $\mathbb{A} \leftarrow \text{TopN}(\mathbb{A}, score, b) \text{ # select the top-k score candidate labels}$ 12: end for 13: 14: $\bar{Z} \leftarrow \text{TopN}(\mathbb{A}, score, 1)$ # select the best candidate labels $f \leftarrow \text{Update}(f, X, \overline{Z})$ # update model using abduced labels \overline{Z} 15: 16: end for

• Could be accelerated by GPU and parallel computations

Combing Different Consistency Measures

• The confidence score

ConfidenceScore
$$(\boldsymbol{x}, \bar{\boldsymbol{z}}) = \frac{1}{|\boldsymbol{x}|} \prod_{x_i \in \boldsymbol{x}} \text{Confidence}(x_i, \bar{z}_i)$$

• The final score for ABLSim's consistency measure

 $Score(\boldsymbol{x}, \bar{\boldsymbol{z}}) = \theta \cdot SimilarityScore(\boldsymbol{x}, \bar{\boldsymbol{z}}) + (1 - \theta) \cdot ConfidenceScore(\boldsymbol{x}, \bar{\boldsymbol{z}})$

Weighting coefficient

Experiments

Results

- MNIST (CIFAR-10) Addition
- Handwritten Formula Recognition (HWF)

	Method	Addition	Addition (CIFAR)	HWF	HWF (CIFAR)
Acc / %	DeepProbLog	96.5±0.5	21.6±1.7	32.2±0.6	15.2±2.6
	NGS-dft	39.9±54.1	38.7±35.1	99.6±0.2	23.8±6.3
	NGS-opt	98.5±0.3	88.7±0.8	99.6±0.2	66.0±14.5
	ABLSim (ours)	98.8±0.1	88.9±0.5	99.9±0.1	88.4±0.7
Time / s	DeepProbLog	396 ± 3	time out	time out	time out
	NGS-dft	time out	time out	299±36	time out
	NGS-opt	46 ± 4	6954±558	240±7	time out
	ABLSim (ours)	42 ± 5	6066±79	130 ±4	7263 ± 122

• ABLSim solves all tasks efficiently and achieves a higher accuracy than SOTA models

Results

• CIFAR-10 Decimal Equation Decipherment

Figure 3: Learning curves (a & b) and the t-SNE visualization of the learned embeddings (c & d).

- Converges much faster and achieves higher accuracy than other methods
- The embeddings of classes are improved after the neural net is updated with the abduced labels

Results

• Theft Judicial Sentencing

Table 3: Micro-F1-score of the model, and							
MAE of the predicted sentence. The label							
rates are denoted as suffixes.							
KB	Method	F1	MAE				
N/A	PL-10	0.814	0.862				
N/A	Tri-10	0.812	0.840				
Full	SS-ABL-10	0.862	0.824				
Part	SS-ABL-10	0.833	0.835				
Part	ABLSim-10	0.851	0.828				
N/A	PL-50	0.858	0.832				
N/A	Tri-50	0.861	0.810				
Full	SS-ABL-50	0.865	0.788				
Part	SS-ABL-50	0.862	0.803				
Part	ABLSim-50	0.866	0.783				

• ABLSim achieves the highest or comparable performance with weaker KB

- Propose a novel consistency measure for abduction-based neuro-symbolic learning and the ABLSim method
- ABLSim significantly outperforms the state-of-the-art neuro-symbolic learning approaches in terms of speed and performance
- Future work: discover new class and new knowledge to automatically extend the knowledge base

Yu-Xuan Huang

huangyx@lamda.nju.edu.cn

https://www.lamda.nju.edu.cn/huangyx/

Thanks!