Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning

Yizhen Zhang^{1,2}, Minkyu Choi¹, Kuan Han¹, Zhongming Liu^{1,3}

1 Department of Electrical Engineering and Computer Science, University of Michigan

2 Department of Neurological Surgery, University of California San Francisco

3 Department of Biomedical Engineering, University of Michigan

Motivation

How humans learn language?

- We learn the meaning of a word (e.g., banana) by associating it with the sensory features (e.g., shape, color, smell, taste etc.) of its referent (a real banana in the physical world).
- We learn **concepts** from **real world experiences**.

Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. *Psychonomic bulletin & review*, 23(4), 979-990.

Motivation

Predominant language learning models learn word representations only from **textual** context instead of **multimodal** context.

The latest news from Google AI

Bert: Pre-training of deep bidirectional transformers for language understanding

J Devlin, <u>MW Chang</u>, <u>K Lee</u>, <u>K Toutanova</u> - arXiv preprint arXiv ..., 2018 - arxiv.org We introduce a new language representation model called **BERT**, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, **BERT** is designed to pre-train deep bidirectional representations ... ☆ ワワ Cited by 20810 Related articles All 26 versions ≫

Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing

Friday, November 2, 2018

Posted by Jacob Devlin and Ming-Wei Chang, Research Scientists, Google AI Language

Bert

Devlin et al. 2018

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.

Motivation

Predominant language learning models learn word representations only from **textual** context instead of **multimodal** context.

The machine is doing a task like deciphering an ancient language – since 'word symbols' in these language models are not grounded in real world experience.

Devlin et al. 2018

Figures adapted from online resources. Harnad, S. (1990). The symbol grounding problem. *Physica D: Nonlinear Phenomena*, 42(1-3), 335-346.

Background

Early works for grounding language in vision:

bag-of-visual-word

capturing word analogy

Analogy	Answer Candidates	GloVe	ViCo
car:land::aeroplane:?	ocean, sky, road, railway	ocean	sky
clock:circle::tv:?	triangle, square, octagon, round	triangle	square
park:bench::church:?	door, sofa, cabinet, pew	door	pew
sheep:fur::person:?	hair, horn, coat, tail	coat	hair
monkey:zoo::cat:?	park, house, church, forest	park	house
leg:trouser::wrist:?	watch, shoe, tie, bandana	bandana	watch
yellow:banana::red:?	strawberry, lemon, mango, orange	mango	strawberry
rice:white::spinach:?	blue, green, red, yellow	blue	green
train:railway::car:?	land, desert, ocean, sky	land	land
can:metallic::bottle:?	wood, glass, cloth, paper	glass	glass
man:king::woman:?	queen, girl, female, adult	queen	girl
can:metallic::bottle:?	wood, plastic, cloth, paper	plastic	wood
train:railway::car:?	road, desert, ocean, sky	road	ocean

Table 6. **Answering Analogy Questions.** Out of 30 analogy pairings tested, we found both GloVe and ViCo to be correct 19 times, only ViCo was correct 8 times, and only Glove was correct 3 times. Correct answers are **highlighted**.

Gupta et al. 2019

capturing word similarity

Model	all	adjs	nouns	verbs	conc-q1	conc-q2	conc-q3	conc-q4	hard
Glove	40.8	62.2	42.8	19.6	43.3	41.6	42.3	40.2	27.2
Picturebook	37.3	11.7	48.2	17.3	14.4	27.5	46.2	60.7	28.8
Glove + Picturebook	45.5	46.2	52.1	22.8	36.7	41.7	50.4	57.3	32.5
Picturebook (Visual)	31.3	11.1	38.8	$\frac{20.4}{17.3}$	13.9	26.1	38.7	47.7	23.9
Picturebook (Semantic)	<u>37.3</u>	<u>11.7</u>	<u>48.2</u>		<u>14.4</u>	<u>27.5</u>	<u>46.2</u>	<u>60.7</u>	28.8
Picturebook (1)	24.5	2.6	33.5	12.1	4.7	17.8	32.8	47.8	13.6
Picturebook (2)	28.4	6.5	38.9	9.0	5.0	21.3	34.3	55.1	15.7
Picturebook (3)	30.3	<u>11.9</u>	41.9	3.1	2.6	24.3	37.5	58.3	18.4
Picturebook (5)	34.4	6.8	44.5	<u>18.0</u>	9.0	<u>27.9</u>	42.8	58.3	25.9
Picturebook (10)	<u>37.3</u>	11.7	<u>48.2</u>	17.3	<u>14.4</u>	27.5	<u>46.2</u>	<u>60.7</u>	<u>28.8</u>

Table 3: SimLex-999 results (Spearman's ρ). Best results overall are bolded. Best results per section are underlined. Bracketed numbers signify the number of images used. Some rows are copied across sections for ease of reading.

Kiros and Chan et al. 2018

better word clusters

• coast • slum • basilica • ballroom • music studio Figure 3: t-SNE visualization on CMPlaces sentences for a set of randomly sampled visual scenes. Left: textual model **T**. Right: grounded model $C_g + P_g$.

Bordes and Zablocki et al. 2020

Background

Visual-language cross-modal learning with contrastive loss

IMAGENET DATASET CLIP VIT-L RESNET101 76.2% ImageNe 70.1% ImageNet V2 37.7% 88.9% 72.3% ObjectNe 25.2% 60.2% ImageNet Sketch 77.1% ImageNet Adversarial

CLIP: Radford and Kim et al. 2021

ALIGN: Jia et al. 2021

Method

1. Unimodal Pretraining

1. Unimodal Pretraining

2. Visual Grounding of Natural Language

https://cocodataset.org/

1. Unimodal Pretraining

2. Visual Grounding of Natural Language

 Harwath, D., Recasens, A., Surís, D., Chuang, G., Torralba, A., & Glass, J. (2018). Jointly discovering visual objects and spoken words from raw sensory input. In *Proceedings of the European conference on computer vision* (ECCV) (pp. 649-665).

Training

NT-Xent¹ loss: Normalized Temperature-scaled Cross Entropy Loss

1. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In *International conference on machine learning* (pp. 1597-1607). PMLR.

Training

NT-Xent¹ loss: Normalized Temperature-scaled Cross Entropy Loss

1. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In *International conference on machine learning* (pp. 1597-1607). PMLR.

- 1. Unimodal Pretraining
- 2. Visual Grounding of Natural Language
- 3. Visual Grounding of object relations

https://visualgenome.org/

- 1. Unimodal Pretraining
- 2. Visual Grounding of Natural Language
- 3. Visual Grounding of object relations

$$\begin{aligned} \text{Loss}_{\text{rel}} &= -\frac{1}{|\mathcal{B}|} \sum_{(\boldsymbol{r}_s, \boldsymbol{r}_o; \boldsymbol{R}_p) \in \mathcal{B}} \log \frac{\exp(S(\boldsymbol{r}_s, \boldsymbol{r}_o; \boldsymbol{R}_p) / \tau)}{\sum_{k \in \mathcal{K}_{\text{rel}}} \exp\left(S(\boldsymbol{r}_s, \boldsymbol{r}_o; \boldsymbol{R}_p^k) / \tau\right)} \\ \text{Loss}_{\text{obj}} &= -\frac{1}{|\mathcal{B}|} \sum_{(\boldsymbol{r}_s, \boldsymbol{r}_o; \boldsymbol{R}_p) \in \mathcal{B}} \log \frac{\exp(S(\boldsymbol{r}_s, \boldsymbol{r}_o; \boldsymbol{R}_p) / \tau)}{\sum_{k \in \mathcal{K}_{\text{obj}}} \exp(S(\boldsymbol{r}_s^k, \boldsymbol{r}_o^k; \boldsymbol{R}_p) / \tau)} \end{aligned}$$

Interpreting the grounded semantic space

How does visual grounding reshape the semantic space in the language stream?

After visual grounding, we

- detach the language stream
- extract the grounded word embeddings
- apply intrinsic evaluations
 - Principal Component Analysis
 - Concreteness gradient
 - Clustering of Word Categories
 - Concept composition
 - Cross-modal image search
- interpret the semantic space by human intuition and neurobiological knowledge

Results - PCA

word	category	principal axis	human rating	
oven	cooking tool	30.86	4.97	
zebra	animal	24.74	4.86	
car	car	22.06	4.89	
furniture	house	20.83	4.89	
defense	country	4.65	4.19	
chemistry	sciences	18.67	3.64	
wood	plants	16.22	4.85	
cartoon	art	11.84	4.33	
humid	weather	11.58	3.48	
angel	mythical beasts	7.22	3.82	
lover	people	6.01	3.68	
thousand	math	3.65	3.07	
huge	big	0.17	3.54	
cheerful	emotions	- 2.54	2.34	

Human-rated Word Concreteness:

Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior research methods, 46(3), 904-911.

Semcat dataset: Senel, L. K., Utlu, I., Yücesoy, V., Koc, A., & Cukur, T. (2018). Semantic structure and interpretability of word embeddings. *IEEE/ACM Transactions on Audio, Speech, and Language* Processing, 26(10), 1769-1779.

Results - PCA

	Correlation (Pearson's r)				
Group	Bert	Grounded	Relational Grounded		
word-level category-level	0.1040 0.3538	0.6615 0.8749	0.6948 0.8001		

Semcat dataset: Şenel, L. K., Utlu, I., Yücesoy, V., Koc, A., & Cukur, T. (2018). Semantic structure and interpretability of word embeddings. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 26(10), 1769-1779.

Results – Semantic Norm Prediction

CSLB dataset: Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). The Centre for Speech, Language and the Brain (CSLB) concept property norms. *Behavior research methods*, 46(4), 1119-1127.

Results – word clustering

Semcat dataset: Şenel, L. K., Utlu, I., Yücesoy, V., Koc, A., & Cukur, T. (2018). Semantic structure and interpretability of word embeddings. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 26(10), 1769-1779.

Results - Vision based compositional reasoning

Where is the phrase "striped horse" represented in the Semantic Space?

Is it a ZEBRA ?

What is a "Striped horse" in the grounded semantic space?

tomcat

squirrel

antelope

seahorse

Representation Similarity of Visually Inferred Concepts Striped Horse : Zebra

Images for illustrative purpose only. Adapted from online resources.

Cosine

0.61

0.59

0.58

0.57

0.57

0.56

0.55

0.55

0.54

0.53

0.53

0.53

0.49

0.47

0.44

0.41

0.40

0.36

0.34

0.32

0.25

0.12

Ranking

Similarity

What is a "Striped horse" in the grounded semantic space?

tomcat

squirrel

antelope

seahorse

Similarity Ranking

Cosine	Word	Rani	<
0.61	tomcat	1	
0.59	seahorse	2 💊	\rightarrow
0.58	squirrel	3 🔍	
0.57	antelope	4 💊	7 /
0.57	bobcat	5 🔍	1
0.56	wildcat	6 🔍	//
0.55	swordfish	7 🔍	
0.55	orangutan	8 🔍	
0.54	rhinoceros	9 👟	1
0.53	lion	10 👞	4
0.53	monkey	11 🔍	
0.53	giraffe	12 🔍	
0.49	leopard	30 🛩	\rightarrow
0.47	donkey	38 🧹	//
0.44	mule	60 🧹	//
0.41	horse	84 🧹	1
0.40	camel	95 🧹	
0.36	mare	141 🧹	1
0.34	unicorn	189 🧹	1 /
0.32	stallion	245 🧹	
0.25	chestnut	682 🧹	/
0.12	zebra	2914 🖌	
Before	Visual Grou	inding	

Representation Similarity of Visually Inferred	Concepts
Striped Horse : Zebra	

Word Cosine 0.80 horse mule 0.74 0.73 mare stallion 0.72 seahorse 0.70 donkey 0.70 camel 0.69 antelope 0.66 unicorn 0.63 0.63 leopard chestnut 0.61 zebra 0.60 rhinoceros 0.57 wildcat 0.54 lion 0.51 0.51 orangutan bobcat 0.51 0.47 tomcat squirrel 0.47 monkey 0.46 giraffe 0.36 swordfish 0.25 After Visual Grounding

mare

stallion

zebra

What is a "Red Fruit" in the grounded semantic space?

blueberry

Similarity Ranking

watermelon

pomegranate

palmetto

pineapple

	Representation Similarity of Visually Inferred Concepts						
			Red Fruit				
Cosine	Word	Rank	Rank Word	Cosi			
0.85	fruit	1 🗕	▶ 1 tomato	0.78			
0.72	flower	2 🔍	2 fruit	0.77			
0.70	blueberry	3	3 strawberry	0.75			
0.64	inflorescence	4	4 citrus	0.75			
0.64	watermelon	5	5 crimson	0.75			
0.64	pomegranate	6	6 orange	0.72			
0.62	palmetto	7	7 grape	0.71			
0.61	pineapple	8	8 red	0.71			
0.61	seedling	9	9 cranberry	0.70			
0.61	petiole	10	10 grapefruit	0.70			
0.60	mayflower	11	11 peach	0.70			
0.60	petal	12	12 pear	0.68			
0.60	cranberry	13	18 pineapple	0.64			
0.58	citrus	17	24 mayflower	0.58			
0.54	grape	38	37 blueberry	0.55			
0.54	grapefruit	40	41 pomegranate	e 0.53			
0.49	pear	83 🧹	51 watermelon	0.52			
0.42	tomato	177	53 palmetto	0.51			
0.39	strawberry	239	64 flower	0.50			
0.18	peach	2170	67 seedling	0.49			
0.17	crimson	2301	96 inflorescence	e 0.45			
0.11	orange	3645	133 petal	0.41			
0.08	red	4060 🧹	> 159 petiole	0.39			
Before	efore Visual Grounding After Visual Grounding						

Results - Vision based compositional reasoning

Ouerv Phrase	Target Word	Similarity (cosine rank)						
		Bert		Gro	unded	Relational		
striped horse	zebra	0.12	2914	0.60	12	0.63	8	
black and white bear	panda	0.13	2478	0.69	2	0.81	2	
flying car	plane	0.36	167	0.66	4	0.61	11	
round container	bowl	0.25	489	0.56	8	0.67	2	
red fruit	strawberry	0.39	239	0.75	3	0.85	3	
young dog	puppy	0.40	94	0.92	2	0.93	2	
iced mountain	glacier	0.44	20	0.86	1	0.73	5	
clear sky	sunny	0.27	631	0.31	184	0.34	61	
hot weather	summer	0.27	903	0.52	14	0.53	6	

$$\mathcal{T}_V, \mathcal{T}_L:$$

The nonlinear transformation from the image / word space to the L2-normed multimodal representational space.

Image Pool: 41620 images from Open Images validation dataset

Image Pool: 41620 images from Open Images validation dataset

Summary

We design a two-stream model for grounding language learning in vision:

- Progressive training
- cross-modal contrastive learning

After training, we analyze the language model as a stand-alone system. In this grounded word embedding space:

- The first principal axis = concrete vs. abstract gradient
- Principal axes are explainable by human intuition.
- Word representation captures human-defined semantic feature norms.
- Concepts are better clustered.

Besides, "zebra = striped horse" in both word embedding space and joint representational space.

Thank you!

QUESTIONS & COMMENTS?

Paper #6384