Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems

Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma, Huazhong Yang, Jiaming Song, Yu Wang, Yi Wu

Contents

- \checkmark Introduction: problem definition, solution
- ✓ VACL: Variational Automatic Curriculum Learning
 - ➢ Task Expansion
 - Entity progression
- ✓ Experiments
- ✓ Conclusion

Introduction

Multi-agent reinforcement learning (MARL) is applied to solve challenging multiagent games

OpenAI Five Dota 2

AlphaStar StarCraft

Hide-and-seek

> learning intelligent multi-agent policies in general still remains a great RL challenge:

Introduction

- > We focus on goal-conditioned cooperative problems
 - Sparse reward problems
 - Massive agents

Introduction

Solution: Curriculum Learning

*We prove that if we can perfectly optimize the RL procedure for \mathcal{L}_1 under $q(\phi)$, \mathcal{L}_2 encourages $q(\phi)$ to converge to $p(\phi)$

 $L_1: \mathbb{E}_{\phi \sim q(\phi)}[V(\phi, \pi)], \text{ standard RL procedure}$ $L_2: \mathbb{E}_{\phi \sim q(\phi)}[V(\phi, \pi)\log(\frac{p(\phi)}{q(\phi)})] \qquad \text{How to represent } q(\phi) ?$

$$L_2: \mathbb{E}_{\phi \sim q(\phi)}[V(\phi, \pi)\log(\frac{p(\phi)}{q(\phi)})] \qquad \text{How to update } q(\phi) ?$$

Stein variational gradient descent

 $\phi' = \phi + \epsilon f(\phi)$

Task Expansion

> Implementation

✓ Value Quantization

$$V(\phi, \pi) \xrightarrow{\text{Efficient}} Q_{sol} = \{\phi | V(\phi, \pi) > \sigma_{max}\}$$
$$Q_{act} = \{\phi | \sigma_{min} \le V(\phi, \pi) \le \sigma_{max}\}$$

✓ Sampling-Based Particle Exploration

$$f^{*}(\cdot) = E_{\phi' \in Q} [V(\phi', \pi) \cdot \nabla_{\phi'} k(\phi', \cdot)]$$

$$\int \text{Simplify}$$

$$\tilde{f}^{*}(\cdot) \propto \mathbb{E}_{\phi' \in \mathcal{Q}_{sol}} [\nabla_{\phi'} k(\phi', \cdot)]$$

 $\boldsymbol{\phi}_{exp} \leftarrow \boldsymbol{\phi}_{seed} + \boldsymbol{\epsilon} \tilde{f}^*(\boldsymbol{\phi}_{seed}) + \boldsymbol{Unif}(-\boldsymbol{\delta}, \boldsymbol{\delta})$

newly solved task

uniform noise $/ \tilde{f}^*(\cdot)$

Entity Progression

How to handle discrete variables ?

✓ Continuous Relaxation for Discrete Parameter

- p(n; z) =Categorical $(z_1, z_2, ..., z_N)$ denotes the distribution which generates *n* agents with probability z_n
- start with $z_{n_0} = 1$ and gradually increase z_k for larger k

 Z_0

 Z_1

 Z_2

 Z_N

Simple-Ball

Push-Ball

Baselines :

- (1) multi-agent PPO with uniform task sampling (Uniform)
- (2) naïve population curriculum (PC-Unif)
- (3) reverse curriculum generation (RCG)
- (4) automatic goal generation (GoalGAN)
- (5) adversarially motivated intrinsic goals (AMIGo)

✓ Main results

✓ The results of massive agents

Table 1: The best coverage rate ever reported on *Simple-Spread*.

2456.8%/97.6%50/92%98.5%100/89%98%	n	EPC	ATOC	VACL
	24	56.8%	/	97.6%
	50	/	92%	98.5%
	100	/	89%	98%

The Hide-and-Seek Environment

Ramp-Use

Lock-and-Return

The Hide-and-Seek Environment

✓ Main results

		Uniform	RCG	GoalGAN	AMIGo	VACL
Ramp-Use	n = 1	$42.8\% \pm 35.4\%$	$31.5\% \pm 33.7\%$	$1.0\%\pm0.8\%$	$47.2\% \pm 10.3\%$	$93.3\% \pm 5.4\%$
Lock-and-Return	$ \begin{array}{c} n = (2,2) \\ n = (4,4) \end{array}$	<1% /	$5.0\% \pm 5.1\%$ /	<1% /	< 2% /	$97.3\% \pm 0.1\% \ 97.0\% \pm 1.6\%$

Table 2: Results of VACL and baselines in HnS tasks.

Conclusion

Variational Automatic Curriculum Learning (VACL)

- efficiently solves a collection of sparse-reward multi-agent cooperative problems
- achieves over 98% coverage rate with 100 agents in the simple-spread testbed using sparse rewards
- achieves over 90% success rates on both two games in the HnS scenarios, including reproducing the ramp use behavior.

Thanks!

Visit our website for more information https://sites.google.com/view/vacl-neurips-2021

Jiayu Chen jiayu-ch19@mails.tsinghua.edu.cn