

Learning to dehaze with polarization

Chu Zhou¹, Minggui Teng¹, Yufei Han³, Chao Xu¹, Boxin Shi^{1, 2}

¹Peking University ²Beijing Academy of Artificial Intelligence ³Beijing University of Posts and Telecommunications

Background

A hazy image contains two unknown components.

Background

Two kinds of dehazing methods

Blindly recover the original scene radiance

- Numerical optimization [He PAMI10]
- CNN [Dong CVPR20]
- GAN [Deng ECCV20]

Pros: only require a single shot Cons: very ill-posed and bad generalization ability

Capture multiple images

- under different weather conditions [Nayar PAMI03]
- from different viewpoints [Pang CVPR20]
- using different kind of camera (RGB+NIR) [Feng ICIP13]

Pros: less ill-posed and good generalization ability Cons: require multiple shots

Polarization: making dehazing more robust and convenient

Hazy image I

Dehazed result

Polarized images $I_{\alpha^{(1,2,3)}}$

captured in a single shot

Still not robust enough!

However, they

- assume the transmitted light is not significantly polarized
- require sky regions to estimate the infinite airlight and DoP
- cannot handle the spatially-variant real-world scattering
- ignore the semantic and contextual information

A generalized physical image formation model

A generalized physical image formation model

Decompose based on whether they are parallel or perpendicular to the PoI:

$$\mathbf{I} = \mathbf{I}^{\perp} + \mathbf{I}^{\parallel}$$
 $\mathbf{T} = \mathbf{T}^{\perp} + \mathbf{T}^{\parallel}$ $\mathbf{A} = \mathbf{A}^{\perp} + \mathbf{A}^{\parallel}$

Degree of polarization (DoP):

A generalized physical image formation model

when placing a polarizer with polarization angle α :

Polarization-based dehazing pipeline: an overview

Network: stage 1

The first stage is for transmitted light estimation:

$$\Gamma = \frac{\mathbf{P} \cdot \mathbf{I} - \mathbf{I} \cdot \mathbf{P}_A}{\mathbf{P}_T - \mathbf{P}_A}$$

Network: stage 2

The second stage is for original scene radiance reconstruction:

$$\mathbf{R} = \frac{\mathbf{T} \cdot \mathbf{A}_{\infty}}{\mathbf{A}_{\infty} - (\mathbf{I} - \mathbf{T})}$$

Results on synthetic data

	Ours	SPCVE 54	GDN [44]	BPP [82]	FFA <mark>65</mark>	HardGAN 5	MSBDN [7]
PSNR MS-SSIM	28.32 0.951	15.94 0.521	26.54 0.928	24.93	26.84 0.934	26.22	26.94

• A state-of-the-art polarization-based dehazing methods:

- **SPCVE:** Skyless polarimetric calibration and visibility enhancement. Optics Express, 2009.
- Five learning-based single-image dehazing methods:
 - **GDN:** GridDehazeNet: Attention-based multi-scale network for image dehazing. In Proc. of ICCV, 2019.
 - BPP: Single image dehazing for a variety of haze scenarios using back projected pyramid network. In Proc. of ECCVW, 2020.
 - FFA: FFA-Net: Feature fusion attention network for single image dehazing. In Proc. of AAAI, 2020.
 - HardGAN: HardGAN: A haze-aware representation distillation GAN for single image dehazing. In Proc. of ECCV, 2020.
 - **MSBDN:** Multi-scale boosted dehazing network with dense feature fusion. In Proc. of CVPR, 2020.

Results on synthetic data: visualization (part1)

Results on synthetic data: visualization (part2)

Polarized images $I_{\alpha^{(1,2,3)}}$

GDN P:30.47 M:0.964

Hazy image I

Original scene radiance R

FFA P:30.40 M:0.967

Ours P:33.11 M:0.982

HardGAN P:29.64 M:0.961

SPCVE P:19.64 M:0.652

MSBDN P:30.72 M:0.964

Results on synthetic data: visualization (part3)

Polarized images $I_{\alpha^{(1,2,3)}}$

GDN P:28.69 M:0.952

Original scene radiance R

FFA P:29.04 M:0.952

Ours P:30.35 M:0.965

HardGAN P:27.74 M:0.945

SPCVE P:20.85 M:0.719

MSBDN P:28.75 M:0.948

Results on real data: visualization (part1)

Results on real data: visualization (part2)

Conclusion

- A generalized physical formation model of hazy images
 - taking into account the polarization effects of both transmitted light and airlight
 - along with the spatially-variant real-world scattering
- A robust polarization-based dehazing pipeline
 - without the requirement of specific clues
 - by adopting deep learning to estimate necessary physical parameters
- A two-stage neural network
 - making full use of semantic and contextual information to handle the spatially-variant real-world scattering

Learning to dehaze with polarization

Chu Zhou¹, Minggui Teng¹, Yufei Han³, Chao Xu¹, Boxin Shi^{1, 2}

¹Peking University ²Beijing Academy of Artificial Intelligence ³Beijing University of Posts and Telecommunications