

NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild

Jason Y. Zhang Gengshan Yang Shubham Tulsiani^{*} Deva Ramanan^{*}

NeurIPS 2021

(* denotes equal coding)

Goal: 3D from Sparse Views

Given:

Several Images + Masks of Same Instance

Coarse Initial Mesh + Coarse Off-the-shelf Poses

Recover:

Textured 3D Reconstruction w/ Plausible Illumination

Related Work in Volumetric Rendering: High-fidelity Novel View Synthesis

Mildenhall et al. NeRF. (ECCV 2020)

Bottlenecks for View Synthesis in the Wild

1. Many (50+) Views

2. Precisely Calibrated Camera Poses

NeRF Struggles to Generalize when Trained w/ Sparse Views

Training Images

NeRF*

Training Images

Why does NeRF Fail with sparse views?

NeRF allows for arbitrary geometry and appearance

NeRS: Neural Reflectance Surfaces

- Insight 1: Objects generally have well-defined surfaces
- Insight 2: View-dependent appearance cannot be arbitrary

Representing Neural Surfaces

Rendering View-dependent Effects

Rendering using Phong Shading

Camera

Rendering Equation:

$$L_o(x,v) = \int_{\Omega} f_r(x,v,\omega) L_i(x,\omega)(\omega \cdot n) d\omega$$

 $\approx T(x)I_{\text{diffuse}}(x) + \frac{k_s}{k_s}I_{\text{specular}}(x,v)$

$$I_{\text{diffuse}}(x) = \sum_{\omega \in \Omega} (\omega \cdot n) L_i(\omega)$$

Shininess
$$I_{\text{specular}}(x, v) = \sum_{\omega \in \Omega} (r_{\omega, n} \cdot v)^{\alpha} L_i(\omega)$$

Environment Map: $L_i(x,\omega) \equiv L_i(\omega) = f_{env}(\omega)$

Surface-based Illumination

Normals (n)

Diffuse Lighting (I_{diffuse})

View Indep.

 $(T \odot I_{\text{diffuse}})$

Specular Lighting $(I_{\rm specular})$

 (L_o)

Qualitative Results

NeRS on Everyday Objects

Training View Initial Mesh Output

Training View Initial Mesh

Output

NeRS Recovers 3D at Scale (from Online Marketplace Images)

Evaluation

Challenge: Evaluation w/out GT Cameras

- Novel View Synthesis evaluation requires GT poses
- COLMAP fails to recover meaningful poses and reconstructions given wide-baseline inputs:

Approx. Off-the-Shelf Camera Poses

Xiao et al. PoseFromShape. (BMVC 2019)

Evaluation with Fixed Pseudo-GT Poses

• Manually correct camera poses jointly optimized over all images in an instance

Evaluation with Approximate OTS Poses

• Cameras can be *refined* during both training and testing

Quantitative Evaluation

Perceptual Distance (Lower is Better)

Thanks for Watching!

Project webpage: jasonyzhang.com/ners