A Universal Law of Robustness via Isoperimetry

Mark Sellke (Stanford) Joint with Sébastien Bubeck (MSR)

https://arxiv.org/abs/2105.12806

Adversarial Examples

- "Axioms" for today: Modern neural networks...
 - 1. Memorize their training data near-perfectly.
 - 2. Are vulnerable to small perturbations.
- What is going on?
- Some hypotheses:
 - 1. Robust memorization is computationally hard
 - 2. Neural networks cannot memorize robustly
 - 3. Robust memorization needs more data
 - 4. Robust memorization requires large models

Adversarial Examples

- "Axioms": Neural networks...
 - 1. Memorize training data.
 - 2. Are vulnerable to small perturbations.
- What is going on?

• Some hypotheses:

- 1. Robust memorization is computationally hard
- 2. Neural networks cannot memorize robustly
- 3. Robust memorization needs more data
- 4. Robust memorization requires large models

aw of Robustness

The Model of Memorization

- Input: $n = d^{O(1)}$ random points $x_1, \dots x_n$ on d-dimensional unit sphere.
- Labels $y_i = g(x_i) + Z_i$: signal + noise.
 - Noise variance = σ^2 .
- Perfect memorization: $f: \mathbb{R}^d \to \mathbb{R}$ fits data perfectly:

$$f(x_i) = y_i, i \in \{1, 2, ..., n\}.$$

• Partial memorization: fit data *much better than the signal:*

$$\sum_{i} (f(x_i) - y_i)^2 \le \frac{1}{2} \sum_{i} Z_i^2.$$

Robustness and Memorization

• Definition: a function $f : \mathbb{R}^d \to \mathbb{R}$ is *L*-robust if $Lip(f) \le L$, i.e.

 $|f(x) - f(x')| \le L||x - x'||.$

- Reason: Lipschitz implies robustness to adversarial perturbations!
- This is a strong notion of robustness.
- Fact: w.h.p, perfect memorization is possible with an O(1)-robust function.
 - Proof: w.h.p, $|x_i x_j| \ge 0.1$ for all *i*, *j*. Follows from Kirszbraun extension theorem.
 - This is abstract and non-constructive...
- How **complicated** does a good memorizer need to be?
- More precisely: how large a function class \mathcal{F} must be fixed **beforehand** to contain a (robust) memorizer w.h.p?

Size vs Robustness

- Q: if some $f \in \mathcal{F}$ (robustly) memorizes, how large is the function class \mathcal{F} ?
- Measure size by # parameters P. Formally: $w \to f_w \in \mathcal{F}$ for $w \in \mathbb{R}^P$ with:

 $|w| \le poly(d), \qquad |f_w(x) - f_{w'}(x)| \le poly(d) \cdot |w - w'| \ \forall w, w', x.$

- Captures "true" parameter count for convolutional networks, weight sharing, ...
- *P* is # parameters in the **model class**
 - Count all possible weights even under post-training sparsification.
- Fact: P = n parameters suffice to memorize
 - [Baum 1988]: use a 2-layer neural network with n/d neurons. Not robust.
- Fact: P = nd parameters suffice to *robustly* memorize.
 - Put 1 radial basis function on each input. Each RBF specified by d parameters.

A Universal Law of Robustness

- Conjecture [Bubeck-Li-Nagaraj 20]: $Lip(f) \ge \sqrt{\frac{nd}{p}}$ for 2-layer neural networks.
- Theorem [Bubeck-S. 21]: for P-parameter function classes \mathcal{F} , partial memorization of noisy data by some $f \in \mathcal{F}$ implies:

$$Lip(f) \gg \sigma \sqrt{\frac{nd}{P}}.$$

- Input distribution can be a mixture of $n^{0.99}$ isoperimetric components.
- Heteroscedastic noise is also fine. Just need $\sigma^2 = \mathbb{E}[Var[y_i|x_i]]$.
- Tight for any $P \gg n$: project down to dimension $\tilde{d} = P/n$, use n RBFs in $\mathbb{R}^{\tilde{d}}$.

Isoperimetry

- Key property of high-dimensional space: isoperimetry. Many related definitions.
- Relevant Definition: μ is *c*-isoperimetric if for any *L*-Lipschitz $f: \mathbb{R}^d \to \mathbb{R}$,

$$\mathbb{P}^{\mu}[|f(x) - \mathbb{E}^{\mu}[f]| \ge t] \le 2e^{-\frac{dt^2}{2cL^2}}$$

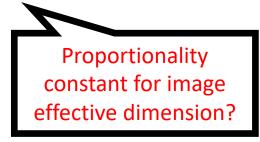
- Applies to many "genuinely high-dimensional" distributions
 - Sphere/Gaussian
 - Cube with Hamming distance
 - Negatively curved manifolds, Gaussian plus small independent noise,...
 - Holds when μ has a nice **log-Sobolev constant**.

Interpretation

- Real datasets are mixtures
 - Cat component vs dog component.
 - 1 cat, 2 cat, red cat, blue cat?
 - Components could have small diameter or live on a lower-dimensional manifold.
 - Optimistically, law of robustness holds with appropriate *effective dimension*.
 - Determine naïve vs effective dimension scaling empirically to extrapolate?
- What is noise?
 - In theory: no noise \rightarrow nothing to learn
 - Real life: noise is "complicated" part of the function?
 - Learning algorithms may have "inductive bias" that helps to learn the simple part.

MNIST and ImageNet

- Back-of-the-envelope on robust ImageNet leads to realistic modern parameter scale.
 - Lots more work needed to make a real prediction. Goal is to illustrate potential for scaling laws.
- MNIST results from [MMSTV 18]:
 - $n \approx 10^5$, $d = 28^2 \approx 10^3$.
 - Good robust accuracy achieved at P $\approx 10^6$ parameters.
 - Effective dimension $\hat{d} \approx \frac{P}{n} = 10^1 = d/100$?
- ImageNet
 - $n_I \approx 10^7$, $d_I \approx 10^5$.
 - Prediction: $P_I \approx n_I \hat{d}_I = \frac{n_I d_I}{100} \approx 10^{10}$.



- ImageNet pictures "seem" more complicated than MNIST, so maybe 10^{11} ?
- Current models: typically $P \approx 10^9$.

Generalization Perspective

- Recall: small Rademacher complexity $\mathcal{R}_{\mathcal{F}}$ implies uniform generalization for all $f \in \mathcal{F}$.
- Classically, function class $\mathcal F$ has Rademacher complexity

$$\mathcal{R}_{\mathcal{F}} \leq \sqrt{\frac{\log|\mathcal{F}|}{n}} \approx \sqrt{\frac{P}{n}}.$$

• Theorem: for Lipschitz function classes \mathcal{F} and <u>mixtures</u> of isoperimetric distributions,

$$\mathcal{R}_{\mathcal{F}} \leq \sqrt{\frac{P}{nd}}$$

• Consequence: law of robustness holds for any Lipschitz loss function (not just square-loss).

Open Directions

- Other norms
 - Just need Lipschitz functions to concentrate. When does this hold in e.g. infinity or Wasserstein norm?
- More refined notions of robustness
 - Sobolev norms like $\mathbb{E}^{\mu} |\nabla f(x)|^2$ don't work. Need small gradient everywhere.
 - Connect more precisely to robust test error?
 - Algorithmic law of robustness for gradient-based training?
 - Might not require noisy labels.
- Empirical study and Architecture-Specific Scaling Laws
 - Could there be different slightly different laws of robustness for CNNs, transformers, ...?

