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Adversarial Examples

• “Axioms” for today: Modern neural networks…
1. Memorize their training data near-perfectly.
2. Are vulnerable to small perturbations.

• What is going on?

• Some hypotheses:
• 1. Robust memorization is computationally hard
• 2. Neural networks cannot memorize robustly
• 3. Robust memorization needs more data
• 4. Robust memorization requires large models
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The Model of Memorization

• Input: 𝑛 = 𝑑!(#) random points 𝑥#, … 𝑥% on 𝑑-dimensional unit sphere. 
• Labels 𝑦& = 𝑔 𝑥& + 𝑍&: signal + noise.

• Noise variance = 𝜎!. 

• Perfect memorization: 𝑓:ℝ' → ℝ fits data perfectly: 

𝑓(𝑥") = 𝑦" , i ∈ {1,2, … , 𝑛}.

• Partial memorization: fit data much better than the signal:
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Robustness and Memorization

• Definition:	a	function	𝑓: ℝ! → ℝ is	𝐿-robust	if 𝐿𝑖𝑝 𝑓 ≤ 𝐿,	i.e.	

𝑓 𝑥 − 𝑓 𝑥′ ≤ 𝐿 |𝑥 − 𝑥′ |.
• Reason:	Lipschitz	implies	robustness	to	adversarial	perturbations!
• This	is	a	strong	notion	of	robustness.

• Fact:	w.h.p,	perfect	memorization	is	possible	with	an	𝑂(1)-robust	function.

• Proof:	w.h.p,	 𝑥! − 𝑥" ≥ 0.1 for	all	𝑖, 𝑗.	Follows	from	Kirszbraun	extension	theorem.
• This	is	abstract	and	non-constructive…

• How	complicated does	a	good	memorizer	need	to	be?
• More	precisely:	how	large	a	function	class	ℱ must	be	fixed	beforehand to	contain	
a	(robust)	memorizer	w.h.p?



Size vs Robustness

• Q: if some f ∈ ℱ (robustly) memorizes, how large is the function class ℱ?
• Measure size by # parameters 𝑃. Formally: 𝑤 → 𝑓" ∈ ℱ for	𝑤 ∈ ℝ# with:

𝑤 ≤ 𝑝𝑜𝑙𝑦 𝑑 , |𝑓" 𝑥 − 𝑓"#(𝑥)| ≤ 𝑝𝑜𝑙𝑦 𝑑 ⋅ 𝑤 − 𝑤$ ∀𝑤,𝑤$, 𝑥.
• Captures “true” parameter count for convolutional networks, weight sharing, …
• 𝑃 is # parameters in the model class

• Count all possible weights even under post-training sparsification.

• Fact: 𝑃 = 𝑛 parameters suffice to memorize
• [Baum 1988]: use a 2-layer neural network with 𝑛/𝑑 neurons. Not robust.

• Fact: 𝑃 = 𝑛𝑑 parameters suffice to robustly memorize.
• Put 1 radial basis function on each input. Each RBF specified by 𝑑 parameters.



A Universal Law of Robustness

• Conjecture [Bubeck-Li-Nagaraj 20]: 𝐿𝑖𝑝(𝑓) ≥ LM
N

for 2-layer neural networks.

• Theorem [Bubeck-S. 21]: for P-parameter	function	classes	ℱ,	partial 
memorization	of	noisy	data	by	some	f ∈ ℱ implies:

𝐿𝑖𝑝 𝑓 ≫ 𝜎
𝑛𝑑
𝑃
.

• Input distribution can be a mixture of 𝑛%.'' isoperimetric components.
• Heteroscedastic noise is also fine. Just need 𝜎( = 𝔼 𝑉𝑎𝑟 𝑦) 𝑥) .

• Tight for any 𝑃 ≫ 𝑛: project down to dimension c𝑑 = 𝑃/𝑛, use 𝑛 RBFs in ℝ *!.



Isoperimetry
• Key property of high-dimensional space: isoperimetry. Many related definitions.

• Relevant Definition: 𝜇 is 𝑐-isoperimetric if for any 𝐿-Lipschitz 𝑓:ℝ! → ℝ,

ℙ+ 𝑓 𝑥 − 𝔼+ 𝑓 ≥ 𝑡 ≤ 2𝑒,
!-$
(./$

• Applies to many “genuinely high-dimensional” distributions
• Sphere/Gaussian
• Cube with Hamming distance
• Negatively curved manifolds, Gaussian plus small independent noise,…
• Holds when 𝜇 has a nice log-Sobolev constant.



Interpretation
• Real datasets are mixtures
• Cat component vs dog component. 
• 1 cat, 2 cat, red cat, blue cat?
• Components could have small diameter or live on a lower-dimensional manifold.
• Optimistically, law of robustness holds with appropriate effective dimension.
• Determine naïve vs effective dimension scaling empirically to extrapolate?

• What is noise?
• In theory: no noise → nothing to learn
• Real life: noise is “complicated” part of the function?

• Learning algorithms may have “inductive bias” that helps to learn the simple part.



MNIST and ImageNet
• Back-of-the-envelope on robust ImageNet leads to realistic modern parameter scale.

• Lots more work needed to make a real prediction. Goal is to illustrate potential for scaling laws.

• MNIST results from [MMSTV 18]:
• 𝑛 ≈ 100, 𝑑 = 28( ≈ 101.
• Good robust accuracy achieved at P ≈ 102 parameters.
• Effective dimension o𝑑 ≈ #

3 = 104 = 𝑑/100?

• ImageNet
• 𝑛5 ≈ 106, 𝑑5 ≈ 100.
• Prediction: 𝑃5 ≈ 𝑛5 p𝑑5 =

3%!%
4%% ≈ 𝟏𝟎𝟏𝟎.

• ImageNet pictures “seem” more complicated than MNIST, so maybe 1044?
• Current models: typically 𝑃 ≈ 10'.

Proportionality 
constant for image 

effective dimension?



Generalization Perspective

• Recall: small Rademacher complexity ℛℱ implies	uniform	generalization	for	all	f ∈ ℱ.

• Classically, function class ℱ has Rademacher complexity  

ℛℱ ≤
log ℱ
𝑛

≈
𝑃
𝑛
.

• Theorem: for Lipschitz function classes ℱ and mixtures of isoperimetric distributions, 

ℛℱ ≤
𝑃
𝑛𝑑

.

• Consequence: law of robustness holds for any Lipschitz loss function (not just square-loss).



Open Directions

• Other norms
• Just need Lipschitz functions to concentrate. When does this hold in 

e.g. infinity or Wasserstein norm?
• More refined notions of robustness
• Sobolev norms like 𝔼+ ∇𝑓(𝑥) ( don’t work. Need small gradient 

everywhere.
• Connect more precisely to robust test error?
• Algorithmic law of robustness for gradient-based training? 

• Might not require noisy labels.

• Empirical study and Architecture-Specific Scaling Laws
• Could there be different slightly different laws of robustness for 

CNNs, transformers, …?


